Skip to main content

Modeling of the Superelastic Behavior of CuAlNi - Single Crystals Accounting Anisotropy of Elastic Properties

  • Conference paper
  • First Online:
Advanced Problems in Mechanics (APM 2019)

Abstract

The lattice deformation tensor for \(\beta _1\leftrightarrow \beta _1'\) martensitic transformation was found from available crystallographic data. This tensor was used for modeling of the isothermal deformation of CuAlNi shape memory alloys in the frames of a microstructural model. The simulated stress-strain curves obtained for pseudoelastic austenitic and pseudoplastic martensitic CuAlNi are in a good qualitative agreement with literature experimental data for single crystals with different orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funakubo, H. (ed.): Shape Memory Alloys, vol. 275. Gordon and Breach Science Publication, New York (1987)

    Google Scholar 

  2. Otsuka, K., Wayman, C.M. (eds.): Shape Memory Materials, vol. 282. Cambridge University, Cambridge (1998)

    Google Scholar 

  3. Miyazaki, S., Kawai, T., Sakamoto, H., Otsuka, K.: Study of fracture in Cu-Al-Ni shape memory bicrystals. Trans. Jpn. Inst. Met. 22(4), 244–252 (1982). https://doi.org/10.2320/matertrans1960.22.244

    Article  Google Scholar 

  4. Sugimoto, K., Kamei, K., Matsumoto, H., Komatsu, S., Akamatsu, K., Sugimoto, T.: Grain-refinement and the related phenomena in quaternary Cu-Al-Ni-Ti shape memory alloys. J. de Phys. 12, 43 (1982)

    Google Scholar 

  5. Gastien, R., Corbellani, C.E., Araujo, A., Zelaya, E., Beroia, J.I., Sade, M., Lovey, F.C.: Changes of shape memory properties in CuAlNi single crystals subjected to isothermal treatment. Mat. Charateriz. 84, 240 (2013). https://doi.org/10.1016/j.matchar.2013.08.008

    Article  Google Scholar 

  6. Akash, K., Akash, K.J., Karmarkar, G., Jadhav, A., Narayane, D.C., Patra, N., Palani, I.A.: Investigations on actuation characteristics and life cycle behaviour of CuAlNiMn shape memory alloy bimorph towards flappers for aerial robots. J. Mater. Des. 144, 64–71 (2018). https://doi.org/10.1016/j.matdes.2018.02.013

    Article  Google Scholar 

  7. Kneissl, A.C., Mehrabi, K., Bruncko, M., McKay, B.J., Uhlenhaut, D.: Characterization and properties of NiTi(W) and CuAlNi shape memory alloys. Int. JMR 100, 1038 (2009)

    Google Scholar 

  8. Evard, M.E., Volkov, A.E.: Modeling of martensite accommodation effect on mechanical behavior of shape memory alloys. JEMT 121, 102 (1999)

    Google Scholar 

  9. Volkov, A.E., Evard, M.E., Red’kina, K.V., Vikulenlov, A.V., Makarov, V.P., et al.: Simulation of payload vibration protection by shape memory alloy parts. JMEP 23, 2719 (2014)

    Article  Google Scholar 

  10. Resnina, N., Rubanik, V. (eds.): Shape Memory Alloys: Properties, Technologies, Opportunities. Edition: Materials Science Foundations, vols. 81–82. Trans Tech Publications Ltd., Zurich (2015). Volkov, A.E., Evard, M.E., Belyaev, F.S.

    Google Scholar 

  11. Volkov, A.E., Emelyanova, E.V., Evard, M.E., Volkova, N.A.: An explanation of phase deformation tension-compression asymmetry of TiNi by means of microstructural modeling. J. Alloy. Compd. 577, S127–S130 (2013). https://doi.org/10.1016/j.jallcom.2012.05.131

    Article  Google Scholar 

  12. Volkov, A.E., Evard, M.E., Vikulenlov, A.V., Uspenskiy, E.S.: Simulation of vibration isolation by shape memory alloy springs using a microstructural model of shape memory alloy. Mater. Sci. Forum 738–739, 150–154 (2013). https://doi.org/10.4028/www.scientific.net/MSF.738-739.150

    Article  Google Scholar 

  13. Knowles, K.M., Smith, D.A.: The crystallography of the martensitic transformation in equiatomic nickel-titanium. J. Acta Met. 20, 101 (1981). https://doi.org/10.1016/0001-6160(81)90091-2

    Article  Google Scholar 

  14. Nakata, Y., Iizuka, Y., Ono, T.: The effects of aging on the degree of order in Cu-Al-Ni shape memory alloys. J. Mater. Trans. 57, 257–262 (2016). https://doi.org/10.2320/matertrans.MB201511

    Article  Google Scholar 

  15. Novak, V., Malimanek, J., Zarubova, N.: Martensitic transformations in single crystals of CuAlNi induced by tensile stress. Mat. Sci. Eng. A 191, 193 (1995). https://doi.org/10.1016/0921-5093(94)09628-A

    Article  Google Scholar 

  16. Novak, V., Sittner, P., Zarubova, N.: Anisotropy of transformation characteristics of Cu-base shape memory alloys. Mat. Sci. Eng. A 24–236, 414 (1997). https://doi.org/10.1016/S0921-5093(97)00175-5

    Article  Google Scholar 

  17. Sittner, P., Hashimoto, K., Kato, M., Tokuda, M.: Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube. Scr. Mat. 48, 1153 (2003). https://doi.org/10.1016/S1359-6462(02)00583-3

    Article  Google Scholar 

  18. De Vos, J., Aernoudt, E., Delaey, L.: Remarks on ordering in ternary \(\beta \) CuZnAl alloys. J. Metallkunde 69, 438 (1978)

    Google Scholar 

  19. Sun, Q.P., Zhang, X.Y., Terry, X.T.: Some recent advances in experimental study of shape memory alloys. Solid Mechanics and its Applications, vol. 62 (1997). https://doi.org/10.1007/0-306-46936-7_39

  20. Sun, Q.P., Zhang, X.Y., Terry, X.T.: On deformation of A-M interface in single crystal shape memory alloys and some related issues. JEMT 121, 38 (1999). https://doi.org/10.1115/1.2815997

    Article  Google Scholar 

  21. Kato, H.: Habit plane analysis of the Cubic/18R(9R) martensite transformation in copper-based shape memory alloys. Scr. Mat. 28, 1125 (1998). https://doi.org/10.1016/S1359-6462(97)00579-4

    Article  Google Scholar 

  22. Zhang, X., Sun, Q., Shouwen, Yu.: A non-invariant plane model for the interface in CuAlNi single crystal shape memory alloys. JMPS 48, 2163 (2000). https://doi.org/10.1016/S0022-5096(99)00102-7

  23. Horikawa, H., Ichinose, S., Morri, K., Miyazaki, S., Otsuka, K.: Orientation dependence of stress-induced martensitic transformation in CuAlNi alloy. Metall. Trans. A 20, 779–780 (1989). https://doi.org/10.1007/BF02628376

    Article  Google Scholar 

  24. Sedlak, P., Seiner, H., Landa, M., Novak, V., Sittner, P., Mañosa, Ll.: Elastic constants of BCC austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy. Acta Materialia 53, 13 (2005). https://doi.org/10.1016/j.actamat.2005.04.013

Download references

Acknowledgements

This research was supported by the grant of Russian Foundation of Basic Research 19-01-000658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Y. Chernysheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chernysheva, T.Y., Evard, M.E., Volkov, A.E., Belyaev, F.S. (2020). Modeling of the Superelastic Behavior of CuAlNi - Single Crystals Accounting Anisotropy of Elastic Properties. In: Indeitsev, D., Krivtsov, A. (eds) Advanced Problems in Mechanics. APM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-49882-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49882-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49881-8

  • Online ISBN: 978-3-030-49882-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics