Skip to main content

Influence of the Sperm Velocity on Fertilization Capacity in the Oscillatory Model of Mouse Zona Pellucida

  • Conference paper
  • First Online:
Advanced Problems in Mechanics (APM 2019)

Abstract

Considering the fertilization process as an oscillatory phenomenon, based on mechanotransduction theory of sperm–oocyte interaction, influence of sperm velocity and their specific arrangement on outer surface of oocyte- Zona pellucida (ZP) relative to the oscillatory behavior of ZP was studied using discrete continuum oscillatory spherical net model of mouse ZP. For the calculated favorable impact angles of spermatozoa by using generalized Lissajous curves, a parametric frequency analysis of oscillatory behavior of the knot molecules in the mouse ZP spherical net model is conducted. In order to mimic successful fertilization in physiological conditions in this numerical experiment, velocities of the progressive and hyperactivated spermatozoa were used. The resultant trajectories of knot molecules in mouse ZP (mZP) spherical net model, in the form of generalized Lissajous curves, are presented. Influences of the sperm velocity and its arrangement on the resultant trajectory of the corresponding knot molecules are discussed. Component displacements in the meridian and circular directions of the knot molecules of ZP are in the form of multi-frequency oscillations. Symmetrical arrangements of spermatozoa having effective velocities are more favorable for achieving a favorable oscillatory multi-frequency state of mZP for a successful fertilization. Determining the optimal parameters of spermatozoa impact that will induce a ZP favorable oscillatory state opens the possibilities for more complete explanation of the fertilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hedrih, A., Lazarevic, M., Mitrovic-Jovanovic, A.: Fertilization as a biomechanical oscillatory phenomenon in mammals. In: Maksimović, S., Igić, T., Trišović, N. (eds.) Proceedings of 4th International Congress of Serbian Society of Mechanics, Vrnjačka Banja, Serbia, 4–7 June 2013, pp. 579–584. Serbian Society of Mechanics, Belgrade (2013) (Beograd: Beotele Prom), D-01. ISBN 978-86-909973-5-0

    Google Scholar 

  2. Hedrih, A., Lazarevic, M., Mitrovic-Jovanovic, A.: Influence of sperm impact angle on successful fertilization through mZP oscillatory spherical net model. Comp. Biol. Med. 59, 19–29 (2015)

    Article  Google Scholar 

  3. Sato, K., Kamada, S., Minami, K.: Development of microstretching device to evaluate cell membrane strain field around sensing point of mechanical stimuli. Int. J. Mech. Sci. 52, 251–256 (2010)

    Article  Google Scholar 

  4. Martinova, Y., Petrov, M., Mollova, M., Rashev, R., Ivanova, M.: Ultrastructural study of cat zona pellucida during oocyte maturation and fertilization. Anim. Rep. Sci. 108, 425–434 (2008)

    Article  Google Scholar 

  5. Khalilian, M., Navidbakhsh, M., Valojerdi, M.R., Chizari Mand Yazdi, P.E.: Estimating Young’s modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum. J. Roy. Soc. Inter. 7, 687–694 (2010)

    Article  Google Scholar 

  6. Sun, Y., Wan, K.T., Roberts, K.P., Bischof, J.C., Nelson, B.J.: Mechanical property characterization of mouse zona pellucida. IEEE Tran Nanobiosci. 2, 279–286 (2003)

    Article  Google Scholar 

  7. Miki, K., Clapham, D.E.: Rheotaxis guides mammalian sperm. Curr. Biol. 23, 443–452 (2013)

    Article  Google Scholar 

  8. Flesch, F.M., Gadella, M.B.: Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469, 197–235 (2000)

    Article  Google Scholar 

  9. Eisenbach, M.: Mammalian sperm chemotaxis and its association with capacitation. Dev. Gen. 25, 87–94 (1999)

    Article  Google Scholar 

  10. Pizzari, T.: Of mice and sperm. PNAS 103(41), 14983–14984 (2006)

    Article  Google Scholar 

  11. Gomendio, M., Martin-Coello, J., Crespo, C., Magana, C., Roldan, E.R.S.: Sperm competition enhances functional capacity of mammalian spermatozoa. PNAS 103, 15113–15117 (2006)

    Article  Google Scholar 

  12. Centola, M.G., Blanchard, A., Demick, J., Li, S., Eisenberg, L.M.: Decline in sperm count and motility in young adult men from 2003 to 2013: observations from a U.S. Andrology 4(2), 270–276 (2016). https://doi.org/10.1111/andr.12149

    Article  Google Scholar 

  13. Katebi, M., Movahedin, M., Abdolvahabi, M.A., Akbari, M., Abolhassani, F., Sobhani, A., Aoki, F.: Changes in motility parameters of mouse spermatozoa in response to different doses of progesterone during course of hyperactivation. Iran. Biomed. J. 9, 73–79 (2005)

    Google Scholar 

  14. Kinukawa, M., Nagata, M., Aoki, F.: Changes in flagellar bending during the course of hyperactivation in hamster spermatozoa. Reproduction 125, 43–51 (2003)

    Article  Google Scholar 

  15. Ho, H.C., Suarez, S.S.: Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122, 519–526 (2001)

    Article  Google Scholar 

  16. Gadella, B.M.: Dynamic regulation of sperm interactions with the zona pellucida prior to and after fertilisation. Rep. Fert. Dev. 25, 26–37 (2012)

    Article  Google Scholar 

  17. Malo, A.F., Gomendio, M., Garde, J., Lang-Lenton, B., Soler, A.J., Roldan, E.R.: Sperm design and sperm function. Biol. Lett. 2, 246–249 (2006)

    Article  Google Scholar 

  18. Wolf, P., Feneux, D., Ducot, B., Rodrigues, D., Jouannet, P.: Influence of sperm movement parameters on human sperm\oolemma fusion. J. Rep. Fert. 105, 185–192 (1995)

    Article  Google Scholar 

  19. Dacheux, J.L., Dacheux, F.: New insights into epididymal function in relation to sperm maturation. Reproduction 147, R27–R42 (2014)

    Article  Google Scholar 

  20. Gomendio, M., Roldan, E.: Sperm competition influences sperm size in ammals. Proc. R. Soc. B Biol. Sci. 243(1308), 181–185 (1991). https://doi.org/10.1098/rspb.1991.0029

    Article  Google Scholar 

  21. Montoto, L.G., Sanchez, M.V., Tourmente, M., Martın-Coello, J., Luque-Larena, J.J., Gomendio, M., Roldan, E.R.S.: Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: head first. Reproduction 142, 819–830 (2011)

    Article  Google Scholar 

  22. Tourmente, M., Montserrat, G., Eduardo, R.R.S.: Sperm competition and the evolution of sperm design in mammals. BMC Evol. Biol. 11, 12 (2011). https://doi.org/10.1186/1471-2148-11-12

    Article  Google Scholar 

  23. Anderson, M.J., Dixson, A.F.: Sperm competition, Motility and the midpiece in primates. Nat. Brief Commun. 416, 496 (2002)

    Google Scholar 

  24. Amaral, A., Lourenco¸ B., Marques, M., Ramalho-Santos, J.: Mitochondria functionality and sperm quality. Reproduction 146, R163–R174 (2013)

    Google Scholar 

  25. Firman, R.C., Simmons, L.W.: Sperm midpiece length predicts sperm swimming velocity in house mice. Biol. Lett. 6, 513–516 (2010)

    Article  Google Scholar 

  26. de Boer, P., de Vries, M., Ramos, L.: A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 3, 174–202 (2015)

    Article  Google Scholar 

  27. Subramani, E., Basu, H., Thangaraju, S., Dandekar, S., Mathur, D., Chaudhury, K.: Rotational dynamics of optically trapped human spermatozoa. Sci. World. J. Article ID 154367 (2014). 7 p. http://dx.doi.org/10.1155/2014/154367

  28. Mitrovic, A., Brkic, P., Jovanovic, T.: The effects of hyperbaric oxygen treatment on vigility of spermatozoids: preliminary report. Acta Phys. Hung. 98, 84–89 (2011)

    Google Scholar 

  29. Goodson, S.G., Zhang, Z., Tsuruta, J.K., Wang, W., O’Brien, D.A.: Classification of mouse sperm motility patterns using an automated multiclass support vector machines. Model. Biol. Reprod. 84, 1207–1215 (2011)

    Article  Google Scholar 

  30. Anaya, G.M.C., Calle, F., Perez, C.J., Martın-Hidalgo, D., Fallola, C., Bragado, M.J., Garcıa-Marın, L.J., Oropesa, A.L.: A new Bayesian network-based approach to the analysis of sperm motility: application in the study of tench (Tincatinca) semen. Andrology 3, 956–966 (2015)

    Article  Google Scholar 

  31. Gefen, A.: The relationship between sperm velocity and pressures applied to the zona pellucida during early sperm–oocyte penetration. J. Biomech. Eng. 132, 124501–124501-4 (2010)

    Google Scholar 

  32. Kozlovsky, P., Gefen, A.: Sperm penetration to the zona pellucida of an oocyte: a computational model incorporating acrosome reaction. Comp. Meth. Biomech. Biomed. Eng. 16(10), 7 p. (2013)

    Google Scholar 

  33. Clark, G.F.: The molecular basis of mouse sperm–zona pellucida binding: a still unresolved issue in developmental biology. Reproduction 142, 377–381 (2011)

    Article  Google Scholar 

  34. Brewis, I., Wong, C.-H.: Gamete recognition: sperm proteins that interact with the egg zona pellucida. Rev. Reprod. 4, 135–142 (1999)

    Article  Google Scholar 

  35. Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)

    Article  Google Scholar 

  36. Woolley, D.M.: Motility of spermatozoa at surfaces. Reproduction 126, 259–270 (2003)

    Article  Google Scholar 

  37. Hedrih, A.: Transition in oscillatory behaviour in mouse oocyte and mouse embryo through oscillatory spherical net model of mouse Zona Pellucida. In: Awrejcewicz, J. (ed.) Applied Non-Linear Dynamical Systems, Springer Proceedings in Mathematics & Statistics, vol. 93 pp. 295–303. Springer, Cham (2014). ISBN 978-3-319-08265-3. https://doi.org/10.1007/978-3-319-08266-0_21

  38. Hsiao, W.W., Liao, H.S., Lin, H.H., Ding, R.F., Huang, K.Y., Chang, C.S.: Motility measurement of a mouse sperm by atomic force microscopy. Anal. Sci. 29, 3–8 (2013)

    Article  Google Scholar 

  39. Green, D.: Three-dimensional structure of the zona pellucida. Rev Reprod. 2, 147–156 (1997)

    Article  Google Scholar 

  40. Wassarman, P.M., Litscher, E.S.: Influence of the zona pellucida of the mouse egg on folliculogenesis and fertility. Int. J. Dev. Biol. 56, 833–839 (2012)

    Article  Google Scholar 

  41. Huang, H.L., Lv, C., Zhao, Y.C., Li, W., He, X.M., Li, P., Sha, A.-G., Tian, X., Papasian, C.J., Deng, H.W., Lu, G.-X., Xiao, H.-M.: Mutant ZP1 in familial infertility. N. Engl. J. Med. 370, 1220–1226 (2014)

    Article  Google Scholar 

  42. Murayama, Y., Mizuno, J., Kamakura, H., Fueta, Y., Nakamura, H., Akaishi, K., Anzai, K., Watanabe, A., Inui, H., Omata, S.: Mouse zona pellucida dynamically changes its elasticity during oocyte maturation, fertilization and early embryo development. Hum. Cell 19, 119–125 (2006)

    Article  Google Scholar 

  43. Hedrih, A.: Modeling oscillations of zona pelucida before and after fertilization. In: Young Scientist Prize Paperawarded at the 7th European Nonlinear Dynamics Conference held in Rome, Italy, July 2011, EUROMECH Newsletter. European Mechanics Society, vol. 40, pp. 6–14 (2011). http://www.euromech.org/prizes/presentations. http://www.mi.sanu.ac.rs/projects/NL40-Euromech.pdf

  44. Hedrih, A.: Frequency analysis of knot mass particles in oscillatory spherical net model of mouse zona pellucida. Lecture Session, Short Paper. In Abstract book of 23rd International Congress of Theoretical and Applied Mechanics, (IUTAM ICTAM Beijing 2012), SM01-049 Biomechanics and Biomaterials, 19–24 August 2012, Beijing, China, p. 209. ISBN 978-988-16022-3-7

    Google Scholar 

  45. Hedrih, A., (Stevanovic) Hedrih, K., Bugarski, B.: Oscillatory spherical net model of mouse zona pellucida. J. Appl. Math. Bioinform. 4, 225–268 (2013)

    Google Scholar 

  46. Hedrih, A., Lazarevic, M., Mitrovic-Jovanovic, A.: Parametric frequency analysis of oscillatory behaviour of mouse zona pellucida spherical net model: case successful and unsuccessful fertilization. Proc. Appl. Math. Mech. PAMM 13(1), 53–54. https://doi.org/10.1002/pamm.201310022. http://onlinelibrary.wiley.com/doi/10.1002/pamm.v13.1/issuetoc. In: 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics- GAMM 2013 (Gesellschaft für Angewandte Mathematik und Mechanik), Novi Sad, Serbia, 18–22 March 2013. ISSN 1617-7061

  47. Hedrih (Stevanovic), K.: Discrete continuum method, computational mechanics. In: WCCM VI in Conjunction with APCOM 04, 5–10 September 2004, Beijing, China, pp. 1–11. CD. IACAM International Association for Computational Mechanics (2004). www.iacm.info

  48. Hedrih (Stevanovic), K.: Modes of the homogeneous chain dynamics. Sig. Process. 86, 2678–2702 (2006)

    Google Scholar 

  49. Hedrih (Stevanović), K.: Analytical mechanics of fractional order discrete system vibrations. Adv. Nonlinear Sci. JANN 3, 101–148 (2011). ISSN 978-86-905633-3-3

    Google Scholar 

  50. Hedrih (Stevanović), K.: Advances in classical and analytical mechanics: a reviews of author’s results. Theoret. Appl. Mech. 40 S1, 293–383 (2012). Special Issue. https://doi.org/10.2298/tam12s1293h

  51. Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods. J. Commun. Phys. 230, 4336–4352 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Ramirez-Torres, A., Rodriguez-Ramos, R., Gluge, R., Bravo-Castillero, J., Guinovart-Diaz, R., Rodriguez-Sanchez, R.: Biomechanic approach of a growing tumor. Mech. Res. Commun. 51, 32–38 (2013)

    Article  Google Scholar 

  53. Hedrih (Stevanović), R.K., Hedrih, A.N.: Phenomenological mapping and dynamical absorptions in chain systems with multiple degrees of freedom. J. Vib.Conr. 22, 18–36 (2016)

    Google Scholar 

  54. Bahr, G.F., Zeitler, E.: Study of bull spermatozoa. J. Cell Biol. 21, 175–189 (1964)

    Article  Google Scholar 

  55. Rašković, D.P.: Theory of Elasticity. Naučna knjiga, Beograd (1985)

    MATH  Google Scholar 

  56. Ishijima, S.: Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction 142, 409–415 (2011)

    Article  Google Scholar 

  57. Lefievre, L., Bedu-Addo, K., Conner, S.J., Machado-Oliveira, G.S.M., Chen, Y., Kirkman-Brown, J..C., Afnan, M.A., Publicover, S.J.,. For, W.C.L, Barratt, C.L.R.: Counting sperm does not add up any more: time for a new equation? Reproduction 133, 675–684 (2007)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Prof. Katica (Stevanović) Hedrih from the Mathematical Institute of SANU, Belgrade, Serbia for valuable consultation and suggestions. This work was supported by the Ministry of Education, Sciences and Technology Development of the Republic of Serbia through Mathematical Institute SANU, Belgrade Grant ON174001, as well as Project III No. 41006 through Faculty of Mechanical Engineering, University of Belgrade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andjelka Hedrih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hedrih, A., Mitrovic-Jovanovic, A., Lazarevic, M. (2020). Influence of the Sperm Velocity on Fertilization Capacity in the Oscillatory Model of Mouse Zona Pellucida. In: Indeitsev, D., Krivtsov, A. (eds) Advanced Problems in Mechanics. APM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-49882-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49882-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49881-8

  • Online ISBN: 978-3-030-49882-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics