Skip to main content

Pituitary Gland Signs

  • Chapter
  • First Online:
Endocrine Pathophysiology
  • 743 Accesses

Abstract

Nelson’s syndrome occurs after bilateral adrenalectomy to correct hypercortisolism in patients who have typically failed transsphenoidal surgery. It occurs as a result of the aggressive growth of the underlying ACTH-producing adenoma following the loss of feedback inhibition by circulating cortisol.

Increased ACTH production and the mass effect of an expanding pituitary tumor contributes to the clinical features of this condition. These include hyperpigmentation, headaches, and visual field defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller R, Kugelberg E. Myopathy in Cushing’s syndrome. J Neurol Neurosurg Psychiatry. 1959;22:314–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cushing H. The basophil adenomas of the pituitary body. Ann R Coll Surg Engl. 1969;44:180–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bolland MJ, Holdaway IM, Berkeley JE, Lim S, Dransfield WJ, Conaglen JV, Croxson MS, Gamble GD, Hunt PJ, Toomath RJ. Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin Endocrinol. 2011;75:436–42.

    Article  Google Scholar 

  4. Ammini AC, Tandon N, Gupta N, et al. Etiology and clinical profile of patients with Cushing’s syndrome: a single center experience. Indian J Endocrinol Metab. 2014;18:99.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berr CM, Stieg MR, Deutschbein T, et al. Persistence of myopathy in Cushing’s syndrome: evaluation of the German Cushing’s registry. Eur J Endocrinol. 2017;176:737–46.

    Article  CAS  PubMed  Google Scholar 

  6. Minetto MA, Lanfranco F, Motta G, Allasia S, Arvat E, D’Antona G. Steroid myopathy: some unresolved issues. J Endocrinol Investig. 2011;34:370–5.

    Article  CAS  Google Scholar 

  7. Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA. The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol-Cell Physiol. 2007;293:C313–20.

    Article  CAS  PubMed  Google Scholar 

  8. Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol. 2009;107:645–54.

    Article  CAS  PubMed  Google Scholar 

  9. Stewart PM, Walker BR, Holder G, O’Halloran D, Shackleton CH. 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab. 1995;80:3617–20.

    CAS  PubMed  Google Scholar 

  10. Sharma ST, Nieman LK. Cushing’s syndrome: all variants, detection, and treatment. Endocrinol Metab Clin N Am. 2011;40:379–91.

    Article  CAS  Google Scholar 

  11. Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol. 2014;4:965–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stewart PM, Murry BA, Mason JI. Human kidney 11 beta-hydroxysteroid dehydrogenase is a high affinity nicotinamide adenine dinucleotide-dependent enzyme and differs from the cloned type I isoform. J Clin Endocrinol Metab. 1994;79:480–4.

    CAS  PubMed  Google Scholar 

  13. Stewart PM. Tissue-specific Cushing’s syndrome, 11beta-hydroxysteroid dehydrogenases and the redefinition of corticosteroid hormone action. Eur J Endocrinol. 2003;149:163–8.

    Article  CAS  PubMed  Google Scholar 

  14. Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens. 2004;13:451–8.

    Article  CAS  PubMed  Google Scholar 

  15. Tomlinson JW, Stewart PM. Cortisol metabolism and the role of 11β-hydroxysteroid dehydrogenase. Best Pract Res Clin Endocrinol Metab. 2001;15:61–78.

    Article  CAS  PubMed  Google Scholar 

  16. Loerz C, Maser E. The cortisol-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 in skeletal muscle in the pathogenesis of the metabolic syndrome. J Steroid Biochem Mol Biol. 2017;174:65–71.

    Article  CAS  PubMed  Google Scholar 

  17. Draper N, Stewart PM. 11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol. 2005;186:251–71.

    Article  CAS  PubMed  Google Scholar 

  18. Arlt W. The approach to the adult with newly diagnosed adrenal insufficiency. J Clin Endocrinol Metab. 2009;94:1059–67.

    Article  CAS  PubMed  Google Scholar 

  19. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet Lond Engl. 1997;349:1210–3.

    Article  CAS  Google Scholar 

  20. Baid SK, Rubino D, Sinaii N, Ramsey S, Frank A, Nieman LK. Specificity of screening tests for Cushing’s syndrome in an overweight and obese population. J Clin Endocrinol Metab. 2009;94:3857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25.

    Article  CAS  PubMed  Google Scholar 

  22. Kola B, Christ-Crain M, Lolli F, Arnaldi G, Giacchetti G, Boscaro M, Grossman AB, Korbonits M. Changes in adenosine 5′-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing’s syndrome. J Clin Endocrinol Metab. 2008;93:4969–73.

    Article  CAS  PubMed  Google Scholar 

  23. Tomlinson JW, Draper N, Mackie J, Johnson AP, Holder G, Wood P, Stewart PM. Absence of Cushingoid phenotype in a patient with Cushing’s disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab. 2002;87:57–62.

    CAS  PubMed  Google Scholar 

  24. Anagnostis P, Katsiki N, Adamidou F, Athyros VG, Karagiannis A, Kita M, Mikhailidis DP. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metab - Clin Exp. 2013;62:21–33.

    Article  CAS  PubMed  Google Scholar 

  25. Thiboutot DM. Clinical review 74: dermatological manifestations of endocrine disorders. J Clin Endocrinol Metab. 1995;80:3082–7.

    CAS  PubMed  Google Scholar 

  26. Dykes PJ, Marks R. Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method. J Invest Dermatol. 1977;69:275–8.

    Article  CAS  PubMed  Google Scholar 

  27. Loriaux DL. Diagnosis and differential diagnosis of Cushing’s syndrome. N Engl J Med. 2017;376:1451–9.

    Article  CAS  PubMed  Google Scholar 

  28. Corenblum B, Kwan T, Gee S, Wong NCW. Bedside assessment of skin-fold thickness: a useful measurement for distinguishing Cushing’s disease from other causes of hirsutism and Oligomenorrhea. Arch Intern Med. 1994;154:777–81.

    Article  CAS  PubMed  Google Scholar 

  29. Serres M, Viac J, Schmitt D. Glucocorticoid receptor localization in human epidermal cells. Arch Dermatol Res. 1996;288:140–6.

    Article  CAS  PubMed  Google Scholar 

  30. Meisler N, Shull S, Xie R, Long GL, Absher M, Connolly JP, Cutroneo KR. Glucocorticoids coordinately regulate type I collagen pro alpha 1 promoter activity through both the glucocorticoid and transforming growth factor beta response elements: a novel mechanism of glucocorticoid regulation of eukaryotic genes. J Cell Biochem. 1995;59:376–88.

    Article  CAS  PubMed  Google Scholar 

  31. Nieman LK, Biller BMK, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:1526–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Afshari A, Ardeshirpour Y, Lodish MB, et al. Facial plethora: modern Technology for Quantifying an ancient clinical sign and its use in Cushing syndrome. J Clin Endocrinol Metab. 2015;100:3928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Agata R, Malozowski S, Barkan A, Cassorla F, Loriaux D. Steroid biosynthesis in human adrenal tumors. Horm Metab Res. 1987;19:386–8.

    Article  PubMed  Google Scholar 

  34. Mihailidis J, Dermesropian R, Taxel P, Luthra P, Grant-Kels JM. Endocrine evaluation of hirsutism. Int J Womens Dermatol. 2017;3:S6–S10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bertagna C, Orth DN. Clinical and laboratory findings and results of therapy in 58 patients with adrenocortical tumors admitted to a single medical center (1951 to 1978). Am J Med. 1981;71:855–75.

    Article  CAS  PubMed  Google Scholar 

  36. Thornton MJ, Hamada K, Randall VA, Messenger AG. Androgen-dependent beard dermal papilla cells secrete autocrine growth factor(s) in response to testosterone unlike scalp cells. J Invest Dermatol. 1998;111:727–32.

    Article  CAS  PubMed  Google Scholar 

  37. Sacerdote A, Weiss K, Tran T, Noor BR, McFarlane SI. Hypertension in patients with cushing’s disease: pathophysiology, diagnosis, and management. Curr Hypertens Rep. 2005;7:212–8.

    Article  PubMed  Google Scholar 

  38. Klett C, Ganten D, Hellmann W, Kaling M, Ryffel GU, Weimar-Ehl T, Hackenthal E. Regulation of hepatic angiotensinogen synthesis and secretion by steroid hormones. Endocrinology. 1992;130:3660–8.

    Article  CAS  PubMed  Google Scholar 

  39. Saruta T, Suzuki H, Handa M, Igarashi Y, Kondo K, Senba S. Multiple factors contribute to the pathogenesis of hypertension in Cushing’s syndrome. J Clin Endocrinol Metab. 1986;62:275–9.

    Article  CAS  PubMed  Google Scholar 

  40. Isidori AM, Graziadio C, Paragliola RM, Cozzolino A, Ambrogio AG, Colao A, Corsello SM, Pivonello R. The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J Hypertens. 2015;33:44–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tóth M, Grossman A. Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol. 2013;79:1–11.

    Article  CAS  Google Scholar 

  42. Sathyakumar S, Paul TV, Asha HS, Gnanamuthu BR, Paul MJ, Abraham DT, Rajaratnam S, Thomas N. Ectopic Cushing syndrome: a 10-year experience from a tertiary care center in southern India. Endocr Pract. 2017;23:907–14.

    Article  PubMed  Google Scholar 

  43. Iglesias P, Rodríguez-Berrocal V, Pian H, Díez JJ. Nelson’s syndrome post-bilateral adrenalectomy. QJM Int J Med. 2016;109:561–2.

    Article  CAS  Google Scholar 

  44. Gil-Cárdenas A, Herrera MF, Díaz-Polanco A, Rios JM, Pantoja JP. Nelson’s syndrome after bilateral adrenalectomy for Cushing’s disease. Surgery. 2007;141:147–51; discussion 151-152.

    Article  PubMed  Google Scholar 

  45. Klose M, Lange M, Kosteljanetz M, Poulsgaard L, Feldt-Rasmussen U. Adrenocortical insufficiency after pituitary surgery: an audit of the reliability of the conventional short synacthen test. Clin Endocrinol. 2005;63:499–505.

    Article  CAS  Google Scholar 

  46. Barber TM, Adams E, Ansorge O, Byrne JV, Karavitaki N, Wass JAH. Nelson’s syndrome. Eur J Endocrinol. 2010;163:495–507.

    Article  CAS  PubMed  Google Scholar 

  47. Barber TM, Adams E, Wass JAH. Nelson syndrome: definition and management. Handb Clin Neurol. 2014;124:327–37.

    Article  CAS  PubMed  Google Scholar 

  48. Patel J, Eloy JA, Liu JK. Nelson’s syndrome: a review of the clinical manifestations, pathophysiology, and treatment strategies. Neurosurg Focus. 2015;38:E14.

    Article  PubMed  Google Scholar 

  49. Clemmons DR. Roles of insulin-like growth factor-I and growth hormone in mediating insulin resistance in acromegaly. Pituitary. 2002;5:181–3.

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz RA. Acanthosis nigricans. J Am Acad Dermatol. 1994;31:1–19.

    Article  CAS  PubMed  Google Scholar 

  51. Karadağ AS, You Y, Danarti R, Al-Khuzaei S, Chen W. Acanthosis nigricans and the metabolic syndrome. Clin Dermatol. 2018;36:48–53.

    Article  PubMed  Google Scholar 

  52. Rudman SM, Philpott MP, Thomas GA, Kealey T. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen? J Invest Dermatol. 1997;109:770–7.

    Article  CAS  PubMed  Google Scholar 

  53. Ben-Shlomo A, Melmed S. Skin manifestations in acromegaly. Clin Dermatol. 2006;24:256–9.

    Article  PubMed  Google Scholar 

  54. Chanson P, Salenave S. Acromegaly. Orphanet J Rare Dis. 2008;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rick JW, Jahangiri A, Flanigan PM, Aghi MK. Patients cured of acromegaly do not experience improvement of their skull deformities. Pituitary. 2017;20:292–4.

    Article  PubMed  Google Scholar 

  56. Kong X, Gong S, Su L, Howard N, Kong Y. Automatic detection of acromegaly from facial photographs using machine learning methods. EBioMedicine. 2017;27:94–102.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Renehan AG, Shalet SM. Acromegaly and colorectal Cancer: risk assessment should be based on population-based Studiesc. J Clin Endocrinol Metab. 2002;87:1909.

    Article  CAS  PubMed  Google Scholar 

  58. Ben-Shlomo A, Melmed S. Acromegaly. Endocrinol Metab Clin North Am. 2008;37:101–viii.

    Article  PubMed Central  CAS  Google Scholar 

  59. Lugo G, Pena L, Cordido F. Clinical manifestations and diagnosis of acromegaly. Int J Endocrinol. 2012; https://doi.org/10.1155/2012/540398.

  60. Friedrich N, Thuesen B, Jørgensen T, Juul A, Spielhagen C, Wallaschofksi H, Linneberg A. The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care. 2012;35:768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dutta P, Bhansali A, Vaiphei K, Dutta U, Ravi Kumar P, Masoodi S, Mukherjee KK, Varma A, Kochhar R. Colonic neoplasia in acromegaly: increased proliferation or deceased apoptosis? Pituitary. 2012;15:166–73.

    Article  CAS  PubMed  Google Scholar 

  62. Katznelson L, Laws ER, Melmed S, Molitch ME, Murad MH, Utz A, Wass JAH. Acromegaly: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:3933–51.

    Article  CAS  PubMed  Google Scholar 

  63. Tagliafico A, Resmini E, Nizzo R, Derchi LE, Minuto F, Giusti M, Martinoli C, Ferone D. The pathology of the ulnar nerve in acromegaly. Eur J Endocrinol. 2008;159:369–73.

    Article  CAS  PubMed  Google Scholar 

  64. Wiesman IM, Novak CB, Mackinnon SE, Winograd JM. Sensitivity and specificity of clinical testing for carpal tunnel syndrome. Can J Plast Surg. 2003;11:70–2.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jenkins PJ, Sohaib SA, Akker S, Phillips RR, Spillane K, Wass JA, Monson JP, Grossman AB, Besser GM, Reznek RH. The pathology of median neuropathy in acromegaly. Ann Intern Med. 2000;133:197–201.

    Article  CAS  PubMed  Google Scholar 

  66. Sharma MD, Nguyen AV, Brown S, Robbins RJ. Cardiovascular disease in acromegaly. Methodist Debakey Cardiovasc J. 2017;13:64–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bondanelli M, Ambrosio MR, Degli Uberti EC. Pathogenesis and prevalence of hypertension in acromegaly. Pituitary. 2001;4:239–49.

    Article  CAS  PubMed  Google Scholar 

  68. Kaltsas GA, Mukherjee JJ, Jenkins PJ, Satta MA, Islam N, Monson JP, Besser GM, Grossman AB. Menstrual irregularity in women with acromegaly. J Clin Endocrinol Metab. 1999;84:2731–5.

    Article  CAS  PubMed  Google Scholar 

  69. Dąbrowska AM, Tarach JS, Kurowska M, Nowakowski A. Thyroid diseases in patients with acromegaly. Arch Med Sci AMS. 2014;10:837–45.

    Article  PubMed  Google Scholar 

  70. Abreu A, Tovar AP, Castellanos R, et al. Challenges in the diagnosis and management of acromegaly: a focus on comorbidities. Pituitary. 2016;19:448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tahi S, Meskine D. Prolactinomas and hypogonadism in men. Clinical and developmental aspects after treatment: 21 cases. Ann Endocrinol. 2016;77:365–6.

    Article  Google Scholar 

  72. Schlechte J, Sherman B, Halmi N, vanGilder J, Chapler F, Dolan K, Granner D, Duello T, Harris C. Prolactin-secreting pituitary tumors in Amenorrheic women: a comprehensive study. Endocr Rev. 1980;1:295–308.

    Article  CAS  PubMed  Google Scholar 

  73. Grattan DR, Jasoni CL, Liu X, Anderson GM, Herbison AE. Prolactin regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone secretion in mice. Endocrinology. 2007;148:4344–51.

    Article  CAS  PubMed  Google Scholar 

  74. Glezer A, Bronstein MD. Prolactinomas. Endocrinol Metab Clin N Am. 2015;44:71–8.

    Article  Google Scholar 

  75. Higuchi K, Nawata H, Maki T, Higashizima M, Kato K, Ibayashi H. Prolactin has a direct effect on adrenal androgen secretion. J Clin Endocrinol Metab. 1984;59:714–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sakiyama R, Quan M. Galactorrhea and hyperprolactinemia. Obstet Gynecol Surv. 1983;38:689–700.

    Article  CAS  PubMed  Google Scholar 

  77. Chen AX, Burt MG. Hyperprolactinaemia. Aust Prescr. 2017;40:220–4.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Foitzik K, Langan EA, Paus R. Prolactin and the skin: a dermatological perspective on an ancient pleiotropic peptide hormone. J Invest Dermatol. 2009;129:1071–87.

    Article  CAS  PubMed  Google Scholar 

  79. Peli E, Satgunam P. Bitemporal hemianopia; its unique binocular complexities and a novel remedy. Ophthalmic Physiol Opt J Br Coll Ophthalmic Opt Optom. 2014;34:233–42.

    Article  Google Scholar 

  80. Kedar S, Ghate D, Corbett JJ. Visual fields in neuro-ophthalmology. Indian J Ophthalmol. 2011;59:103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ogra S, Nichols AD, Stylli S, Kaye AH, Savino PJ, Danesh-Meyer HV. Visual acuity and pattern of visual field loss at presentation in pituitary adenoma. J Clin Neurosci Off J Neurosurg Soc Australas. 2014;21:735–40.

    Google Scholar 

  82. Schmalisch K, Milian M, Schimitzek T, Lagrèze WA, Honegger J. Predictors for visual dysfunction in nonfunctioning pituitary adenomas - implications for neurosurgical management. Clin Endocrinol. 2012;77:728–34.

    Article  Google Scholar 

  83. Gan L, Ma J, Feng F, et al. The predictive value of Suprasellar extension for visual function evaluation in Chinese patients with nonfunctioning pituitary adenoma with optic chiasm compression. World Neurosurg. 2018;116:e960–7.

    Article  PubMed  Google Scholar 

  84. Lee IH, Miller NR, Zan E, Tavares F, Blitz AM, Sung H, Yousem DM, Boland MV. Visual defects in patients with pituitary adenomas: the myth of Bitemporal Hemianopsia. Am J Roentgenol. 2015;205:W512–8.

    Article  Google Scholar 

  85. Sperling S, Bhatt H. Prolactinoma: a massive effect on bone mineral density in a young patient. Case Rep Endocrinol. 2016; https://doi.org/10.1155/2016/6312621.

  86. Beshyah SA, Freemantle C, Thomas E, Rutherford O, Page B, Murphy M, Johnston DG. Abnormal body composition and reduced bone mass in growth hormone deficient hypopituitary adults. Clin Endocrinol. 1995;42:179–89.

    Article  CAS  Google Scholar 

  87. Binnerts A, Deurenberg P, Swart GR, Wilson JH, Lamberts SW. Body composition in growth hormone-deficient adults. Am J Clin Nutr. 1992;55:918–23.

    Article  CAS  PubMed  Google Scholar 

  88. Johansen T, Richelsen B, Hansen HS, Din N, Malmlöf K. Growth hormone-mediated breakdown of body fat: effects of GH on lipases in adipose tissue and skeletal muscle of old rats fed different diets. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2003;35:243–50.

    Article  CAS  Google Scholar 

  89. Frayn KN, Coppack SW, Fielding BA, Humphreys SM. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv Enzym Regul. 1995;35:163–78.

    Article  CAS  Google Scholar 

  90. Chaves VE, Júnior FM, Bertolini GL. The metabolic effects of growth hormone in adipose tissue. Endocrine. 2013;44:293–302.

    Article  CAS  PubMed  Google Scholar 

  91. Møller N, Copeland KC, Nair KS. Growth hormone effects on protein metabolism. Endocrinol Metab Clin N Am. 2007;36:89–100.

    Article  CAS  Google Scholar 

  92. Khan R, Jehangir W, Regeti K, Yousif A. Hypertriglyceridemia-induced pancreatitis: choice of treatment. Gastroenterol Res. 2015;8:234–6.

    Article  CAS  Google Scholar 

  93. Díez JJ, Sangiao-Alvarellos S, Cordido F. Treatment with growth hormone for adults with growth hormone deficiency syndrome: benefits and risks. Int J Mol Sci. 2018; https://doi.org/10.3390/ijms19030893.

  94. Kurtoğlu S, Hatipoglu N. Growth hormone insensitivity: diagnostic and therapeutic approaches. J Endocrinol Investig. 2016;39:19–28.

    Article  CAS  Google Scholar 

  95. Castilla-Cortazar I, Ita JRD, Aguirre GA, Rodríguez-Rivera J, García-Magariño M, Martín-Estal I, Flores-Caloca Ó, Diaz-Olachea C. Primary growth hormone insensitivity and psychomotor delay. Clin Case Rep. 2018;6:426–31.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Janecka A, Kołodziej-Rzepa M, Biesaga B. Clinical and molecular features of Laron syndrome, a genetic disorder protecting from Cancer. Vivo Athens Greece. 2016;30:375–81.

    CAS  Google Scholar 

  97. Ohlsson C, Bengtsson B-Å, Isaksson OGP, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev. 1998;19:55–79.

    CAS  PubMed  Google Scholar 

  98. Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol. 2001;54:311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lindsey RC, Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016;432:44–55.

    Article  CAS  PubMed  Google Scholar 

  100. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5:a008334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Nilsson O, Marino R, De Luca F, Phillip M, Baron J. Endocrine regulation of the growth plate. Horm Res. 2005;64:157–65.

    CAS  PubMed  Google Scholar 

  102. Lui JC, Nilsson O, Baron J. Recent research on the growth plate: recent insights into the regulation of the growth plate. J Mol Endocrinol. 2014;53:T1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ginsberg S, Laron Z, Bed MA, Vaisman N. The obesity of patients with Laron syndrome is not associated with excessive nutritional intake. Obes Res Clin Pract. 2009;3:1–52.

    Article  PubMed  Google Scholar 

  104. Laron Z. Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J Clin Endocrinol Metab. 2004;89:1031–44.

    Article  CAS  PubMed  Google Scholar 

  105. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154:557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cotta OR, Santarpia L, Curtò L, Aimaretti G, Corneli G, Trimarchi F, Cannavò S. Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report. J Med Case Rep. 2011;5:301.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Griffeth RJ, Bianda V, Nef S. The emerging role of insulin-like growth factors in testis development and function. Basic Clin Androl. 2014;24:12.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, Cancer and diabetes in humans. Sci Transl Med. 2011;3:70ra13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Denduluri SK, Idowu O, Wang Z, et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015;2:13–25.

    Article  CAS  PubMed  Google Scholar 

  110. Guevara-Aguirre J, Rosenbloom AL. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency. Diabetologia. 2015;58:37–42.

    Article  CAS  PubMed  Google Scholar 

  111. Nakamichi A, Ocho K, Oka K, Yasuda M, Hasegawa K, Iwamuro M, Obika M, Rai K, Otsuka F. Manifestation of central diabetes insipidus in a patient with thyroid storm. Intern Med Tokyo Jpn. 2018;57:1939–42.

    Article  Google Scholar 

  112. Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch. 2008;456:1005–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oksche A, Rosenthal W. The molecular basis of nephrogenic diabetes insipidus. J Mol Med Berl Ger. 1998;76:326–37.

    Article  CAS  Google Scholar 

  114. Moritz ML, Ayus JC. Chapter 8 - diabetes insipidus and syndrome of inappropriate antidiuretic hormone. In: Singh AK, Williams GH, editors. Textb. Nephro-Endocrinol. 2nd ed: Academic Press; 2018. p. 133–61.

    Google Scholar 

  115. Park KS, Yoo KY. Role of vasopressin in current anesthetic practice. Korean J Anesthesiol. 2017;70:245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Loh JA, Verbalis JG. Disorders of water and salt metabolism associated with pituitary disease. Endocrinol Metab Clin N Am. 2008;37:213–34.

    Article  CAS  Google Scholar 

  117. Verrua E, Mantovani G, Ferrante E, Noto A, Sala E, Malchiodi E, Iapichino G, Peccoz PB, Spada A. Severe water intoxication secondary to the concomitant intake of non-steroidal anti-inflammatory drugs and desmopressin: a case report and review of the literature. Horm Athens Greece. 2013;12:135–41.

    Article  Google Scholar 

  118. Li Y, Wei Y, Zheng F, Guan Y, Zhang X. Prostaglandin E2 in the regulation of water transport in renal collecting ducts. Int J Mol Sci. 2017; https://doi.org/10.3390/ijms18122539.

  119. Gao M, Cao R, Du S, et al. Disruption of prostaglandin E2 receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts. Proc Natl Acad Sci. 2015;112:8397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Manni .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manni, A., Quarde, A. (2020). Pituitary Gland Signs. In: Endocrine Pathophysiology. Springer, Cham. https://doi.org/10.1007/978-3-030-49872-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49872-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49871-9

  • Online ISBN: 978-3-030-49872-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics