Skip to main content

Vegetation of the Polar Zone

  • Chapter
  • First Online:
Global Vegetation

Abstract

The polar tundra occurs almost exclusively in the Arctic region. In Antarctica, there are only two flowering plant species, as opposed to just over 2,000 in the Arctic, and in addition about 1,800 cryptogam species. The geographical distribution of the flora of the Arctic is closely connected to the vegetation history in the Pleistocene, and it shows phylogenetic relationships to the flora of the nemoral and boreal high mountains. The plant life forms are similar to those of the alpine flora, and small-scale mosaics on cryo-disturbed soils are characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, R. J., & Brochmann, C. (2003). History and evolution of the arctic flora: In the footsteps of Eric Hultén. Molecular Ecology, 12, 299–313.

    PubMed  Google Scholar 

  • Abbott, R. J., & Comes, H. P. (2004). Evolution in the Arctic: A phylogeographic analysis of the circumarctic plant Saxifraga oppositifolia (purple saxifrage). New Phytologist, 161, 211–224.

    CAS  Google Scholar 

  • Abbott, R. J., Smith, L. C., Milne, R. I., Crawford, R. M. M., Wolff, K., & Balfour, J. (2000). Molecular analysis of plant migration and refugia in the Arctic. Science, 289, 1343–1346.

    CAS  PubMed  Google Scholar 

  • Aleksandrova, V. D. (1980). The Arctic and Antarctic: Their division into geobotanical areas (243 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Allen, G. A., Marr, K. L., McCormick, L. J., & Hebda, R. J. (2012). The impact of Pleistocene climate change on an ancient arctic-alpine plant: Multiple lineages of disparate history in Oxyria digyna. Ecology and Evolution, 2, 649–665.

    PubMed  PubMed Central  Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigl, J. E., Reeb, C. A., & Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.

    Google Scholar 

  • Barkman, J. J. (1980). Synusial approaches to classification. In R. H. Whittaker (Ed.), Classification of plant communities (pp. 111–166). The Hague: Dr. W. Junk.

    Google Scholar 

  • Barthlott, W., Hostert, A., Kier, G., Küper, W., Kreft, H., Mutke, J., Rafiqpoor, M. D., & Sommer, J. H. (2007). Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde, 61, 305–315.

    Google Scholar 

  • Batzli, G. O. (1993). Food selection in lemmings. In N. C. Stenseth & R. A. Ims (Eds.), The biology of lemmings (pp. 281–301). San Diego: Academic Press, London.

    Google Scholar 

  • Bauert, M. R. (1996). Genetic diversity and ecotypic differentiation in arctic and alpine populations of Polygonum viviparum. Arctic and Alpine Research, 28, 190–195.

    Google Scholar 

  • Bazilevich, N. I., Tishkov, A. A., & Vilchek, G. E. (1997). Live and dead reserves and primary production in polar desert, tundra and forest tundra of the former Soviet Union. In F. E. Wielgolaski (Ed.), Polar and alpine tundra. Ecosystems of the World 3, Amsterdam: Elsevier pp. 509–539.

    Google Scholar 

  • Bennike, O., & Böcher, J. (1990). Forest-tundra neighbouring the North Pole: Plant and insect remains from the Plio-Pleistocene Kap København formation, North Greenland. Arctic, 43, 331–338.

    Google Scholar 

  • Berendse, F., & Jonasson, S. (1992). Nutrient use and nutrient cycling in northern ecosystems. In F. S. Chapin III, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, & J. Svoboda (Eds.), Arctic ecosystems in a changing climate: An ecophysiological perspective (pp. 337–356). New York: Academic.

    Google Scholar 

  • Bliss, L. C. (1993). Arctic coastal ecosystems. In E. Van der Maarel (Ed.), Dry coastal ecosystems. Vol. 2A Polar regions and Europe. Ecosystems of the World 2A (pp. 15–22). Amsterdam/New York: Elsevier.

    Google Scholar 

  • Bliss, L. C. (2000). Arctic tundra and polar desert biome. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 1–40). Cambridge: Cambridge University Press.

    Google Scholar 

  • Blümel, W. D. (1999). Physische Geographie der Polargebiete. Leipzig: Teubner.

    Google Scholar 

  • Bravo, L. A., & Griffith, M. (2005). Characterization of antifreeze activity in Antarctic plants. Journal of Experimental Botany, 56, 1189–1196.

    CAS  PubMed  Google Scholar 

  • Brochmann, C., Brysting, A. K., Alsos, I. G., Borgen, L., Grundt, H. H., Scheen, A.-C., & Elven, R. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521–536.

    Google Scholar 

  • Bruun, H. H., Lundgren, R., & Philipp, M. (2008). Enhancement of local species richness in tundra by seed dispersal through guts of muskox and barnacle goose. Oecologia, 155, 101–110.

    PubMed  Google Scholar 

  • Brysting, A. K., Fay, M. F., Leitch, I. J., & Aiken, S. G. (2004). One or more species in the arctic grass genus Dupontia R. Br. (Poaceae)? A contribution to the Panarctic Flora project. Taxon, 53, 365–382.

    Google Scholar 

  • Bültmann, H. (2005). Syntaxonomy of arctic terricolous lichen vegetation including a case study from Southeast Greenland. Phytocoenologia, 35, 909–949.

    Google Scholar 

  • Callaghan, T. V., Björn, L. O., Chernov, Y., Chapin, T., Christensen, T. R., Huntley, B., Ims, R. A., Johansson, M., Jolly, D., Jonasson, S., Matveyeva, N., Panikov, N., Oechel, W., Shaver, G., Elster, J., Henttonen, H., Laine, K., Taulavuorie, K., Taulavuori, E., & Zöckler, C. (2004a). Biodiversity, distributions and adaptions of arctic species in the context of environmental change. Ambio, 33, 404–417.

    PubMed  Google Scholar 

  • Callaghan, T. V., Björn, L. O., Chernov, Y., Chapin, T., Christensen, T. R., Huntley, B., Ims, R. A., Johansson, M., Jolly, D., Jonasson, S., Matveyeva, N., Panikov, N., Oechel, W., Shaver, G., & Henttonen, H. (2004b). Effects on the structure of Arctic ecosystems in the short- and long-term perspectives. Ambio, 33, 436–447.

    PubMed  Google Scholar 

  • Chapin, D. F., & Bledsoe, C. S. (1992). Nitrogen fixation in arctic plant communities. In F. S. Chapin III, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, J. Svoboda, & E. W. Chu (Eds.), Arctic ecosystems in a changing climate: An Ecophysiological perspective (pp. 301–320). New York: Academic.

    Google Scholar 

  • Chapin, F. S., III, McKendrick, J. D., & Johnson, D. A. (1986). Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: Implications for herbivory. Journal of Ecology, 74, 707–731.

    CAS  Google Scholar 

  • Chernov, Y. I., & Matveyeva, N. V. (1997). Arctic ecosystems in Russia. In F. E. Wielgolaski (Ed.), Polar and alpine tundra (Ecosystems of the World 3) (pp. 361–507). Amsterdam: Elsevier.

    Google Scholar 

  • Chiurugwi, T., Beaumont, M. A., Wilkinson, M. J., & Battey, N. H. (2011). Adaptive divergence and speciation among sexual and pseudoviviparous populations of Festuca. Heredity, 106, 854–861.

    CAS  PubMed  Google Scholar 

  • Cooper, E. J., Alsos, I. G., Hagen, D., Smith, F. M., Coulson, S. J., & Hodkinson, I. D. (2004). Plant recruitment in the high Arctic: Seed bank and seedling emergence in Svalbard. Journal of Vegetation Science, 15, 115–224.

    Google Scholar 

  • Crawford, R. M. M. (2004). Long-term plant survival at high latitudes. Biological Journal of Scotland, 56, 1–23.

    Google Scholar 

  • Crawford, R. M. M. (2008). Plants at the margin. In Ecological limits and climate change (p. 478). Cambridge: Cambridge University Press.

    Google Scholar 

  • Daniels, F. J. A. (1994). Vegetation classification in Greenland. Journal of Vegetation Science, 5, 781–790.

    Google Scholar 

  • Daniels, F. J., Bültmann, H., Lünterbusch, C., & Wilhelm, M. (2000). Vegetation zones and biodiversity of the North-American Arctic. Berichte der Reinhold-Tüxen-Gesellschaft, 12, 131–151.

    Google Scholar 

  • Dierssen, K. (1996). Vegetation Nordeuropas (838 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Dixon, E. J. (2001). Human colonization of the Americas: Timing, technology and process. Quaternary Science Reviews, 20, 277–299.

    Google Scholar 

  • Edlund, S. (1990). Bioclimate zones in the Canadian Archipelago. In C. R. Harrington (Ed.), Canada’s missing dimension: Science and history in the Canadian Arctic Islands (pp. 421–441). Canadian Museum of Nature: Ottawa.

    Google Scholar 

  • Elvebakk, A. (1999). Bioclimatic delimitation and subdivision of the Arctic. In I. Nordal & V. Y. Razzhivin (Eds.), The species concept in the high north – A panarctic flora initiative (pp. 81–112). The Norwegian Academy of Science and Letters, Oslo: Norway.

    Google Scholar 

  • Elvebakk, A. (2005). A vegetation map of Svalbard on the scale 1:3.5 mill. Phytocoenologia, 35, 951–967.

    Google Scholar 

  • Elven, R., Murray, D. F., Razzhivin, V. Y., & Yurtsev, B. A. (n.d.). Annotated checklist of the Panarctic Flora (PAF). Vascular Plants. http://nhm2.uio.no/paf/ (2013).

  • Elvebakk, A. (1997). Tundra diversity and ecological characteristics of Svalbard. In Wielgolaski, F.-E. (ed.), polar and alpine tundra. Ecosystems of the World, 3, 347–359.

    Google Scholar 

  • Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J., & Pinzon, J. E. (2012). Dynamics of aboveground phytomass of the circumboreal Arctic tundra during the past three decades. Environmental Research Letters, 7, 015506, 12 pp.

    Google Scholar 

  • Forbes, B. C. (1994). The importance of bryophytes in the classification of human-disturbed high arctic vegetation. Journal of Vegetation Science, 5, 877–884.

    Google Scholar 

  • Forbes, B. C., Ebersole, J. J., & Strandberg, B. (2001). Anthropogenic disturbance and patch dynamics in circumpolar Arctic ecosystems. Conservation Biology, 15, 954–969.

    Google Scholar 

  • Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., & Bergstrom, D. M. (2005). Biological invasions in the Antarctic: Extent, impacts and implications. Biological Reviews, 80, 45–72.

    PubMed  Google Scholar 

  • Frenzel, B., Pécsi, M., & Velichko, A. A. (Eds.). (1992). Atlas of paleoclimates and paleoenvironments of the northern hemisphere. Stuttgart: Geographical Research Institute, Budapest & Gustav Fischer.

    Google Scholar 

  • Frey, W., & Lösch, R. (2010). Lehrbuch der Geobotanik (3rd ed., 600 pp). Heidelberg: Springer Spektrum.

    Google Scholar 

  • Frisvoll, A. A., & Elvebakk, A. (1996). A catalogue of Svalbard plants, fungi, algae and cyanobacteria. 2. Bryophytes. In A. Elvebakk & P. Prestud (Eds.), A catalogue of Svalbard plants, fungi, algae and cyanobacteria (pp. 57–172). Oslo: Norsk Polarinstitutt.

    Google Scholar 

  • Goetz, S. J., Epstein, H. E., Bhatt, U. S., Jia, G. J., Kaplan, J. O., Lischke, H., Yu, Q., Bunn, A., Lloyd, A. H., Alcaraz-Segura, D., Beck, P. S. A., Comiso, J., Raynols, M. K., & Walker, D. A. (2011). Recent changes in arctic vegetation: Satellite observations and simulation model predictions. In G. Gutman & A. Reissell (Eds.), Eurasian Arctic land cover and land use in a changing climate (pp. 9–36). Dordrecht: Springer.

    Google Scholar 

  • Gold, W. G., & Bliss, L. C. (1995). Water limitations and plant community development in a polar desert. Ecology, 67, 1558–1568.

    Google Scholar 

  • Grundt, H. H., Kølner, S., Borgen, L., Rieseberg, L. H., & Brochmann, C. (2006). High biological species diversity in the arctic flora. Proceedings of the National Academy of Sciences of the United States of America, 103, 972–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heide, O. M. (1988). Environmental modification of flowering and viviparous proliferation in Festuca vivipara and F. ovina. Oikos, 51, 171–178.

    Google Scholar 

  • Heide, O. M., & Gauslaa, Y. (1999). Development strategies of Koenigia islandica, a high-arctic annual plant. Ecography, 22, 637–642.

    Google Scholar 

  • Hoffmann, M. H., & Röser, M. (2009). Taxon recruitment of the arctic flora: An analysis of phylogenies. New Phytologist, 182, 774–780.

    CAS  PubMed  Google Scholar 

  • Hultén, E. (1937). Outline of the history of Arctic and boreal biota during the quaternary period. Stockholm: Bokförlags Aktiebolaget Thule.

    Google Scholar 

  • Hultén, E., & Fries, M. (1986). Atlas of north European vascular plants north of the tropic of cancer (1172 pp). Königstein: Koeltz.

    Google Scholar 

  • Ickert-Bond, S., Murray, D. F., & DeChaine, E. (2009). Contrasting patterns of plant distribution in Beringia. Alaska Park Science, 8, 26–32.

    Google Scholar 

  • Joly, K., Jandt, R. R., & Klein, D. R. (2009). Decrease of lichens in Arctic ecosystems: The role of wildfire, caribou, reindeer, competition and climate in North-Western Alaska. Polar Research, 28, 433–442.

    Google Scholar 

  • Jonasson, S., Callaghan, T. V., Shaver, G. R., & Nielsen, L. A. (2000). Arctic terrestrial ecosystems and ecosystem function. In M. Nutall & T. V. Callaghan (Eds.), The Arctic. Environment, people, policy (pp. 275–313). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Jónsdóttir, I. S., & Callaghan, T. V. (1988). Interrelationships between different generations of interconnected tillers of Carex bigelowii. Oikos, 52, 120–128.

    Google Scholar 

  • Jørgensen, R. H., Meilby, H., & Kollmann, J. (2013). Shrub expansion in SW Greenland under modest regional warming: Disentangling effects of human disturbance and grazing. Arctic, Antarctic, and Alpine Research, 45, 515–525.

    Google Scholar 

  • Jørgensen, R. H., Hallinger, M., Ahlgrimm, S., Friemel, J., Kollmann, J., & Meilby, H. (2015). Growth response to climatic change over 120 years for Alnus viridis and Salix glauca in West Greenland. Journal of Vegetation Science, 26, 155–165.

    Google Scholar 

  • Kanda, H., & Komárková, V. (1997). Antarctic terrestrial vegetation. In F. E. Wielgolaski (Ed.), Polar and alpine tundra (Ecosystems of the world) (Vol. 3, pp. 721–761).

    Google Scholar 

  • Kappen, L., & Schroeter, B. (2002). Plants and lichens in the Antarctic, their Way of life and their relevance to soil formation. In L. Beyer & M. Bölter (Eds.), Antarctic ice free coastal landscape (Ecological Studies) (Vol. 154, pp. 327–373).

    Google Scholar 

  • Kashulina, G., Reimann, C., Finne, T. E., Halleraker, J. H., Äyräs, M., & Chekushin, V. A. (1997). The state of the ecosystems in the central Barents region: Scale, factors and mechanisms of disturbance. The Science of the Total Environment, 206, 203–225.

    CAS  Google Scholar 

  • Körner, C. (2003). Alpine plant life. Functional plant ecology of High Mountain ecosystems (2nd ed., 344 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Kudo, G., Molau, U., & Wada, N. (2001). Leaf-trait variation of tundra plants along a climatic gradient: An integration of responses in evergreen and deciduous species. Arctic, Antarctic, and Alpine Research, 33, 181–190.

    Google Scholar 

  • Kytöviita, M.-M. (2005). Asymmetric symbiont adaption to arctic conditions could explain why high arctic plants are non-mycorrhizal. FEMS Microbiology Ecology, 53, 27–32.

    PubMed  Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed.). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Leader-Williams, N., Lewis Smith, R. I., & Rothery, P. (1987). Influence of introduced reindeer on the vegetation of South Georgia: Results from a long-term exclusion experiment. Journal of Applied Ecology, 24, 801–822.

    Google Scholar 

  • Lewis Smith, R. I. (1984). Terrestrial plant biology of the sub-Antarctic and Antarctic. In R. M. Laws (Ed.), Antarctic ecology (Vol. 1, pp. 61–162). New York: Academic.

    Google Scholar 

  • Lewis Smith, R. I. (2003). The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In A. H. L. Huiskes, W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies, & W. J. Wolff (Eds.), Antarctic biology in a global context (pp. 234–239). Leiden: Backhuys.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world atlas (CD-ROM). Leiden: Backhuys Publ.

    Google Scholar 

  • Longton, R. E. (1988). Biology of polar bryophytes and lichens (391 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lugina, K. M., Groisman, P. Y., Vinnikov, K. Y., Koknaeva, V. V., & Speranskaya, N. A. (2007). Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2006. In Trends: A compendium of data on global change. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mackay, J. R. (1998). Pingo growth and collapse, Tuktoyaktuk peninsula area, Western Arctic coast, Canada: A long-term field study. Géographie Physique et Quaternaire, 52, 271–323.

    Google Scholar 

  • Matthews, J. V., & Ovenden, L. E. (1990). Late tertiary plant macrofossils from localities in Arctic/subarctic North America: A review of the data. Arctic, 43, 364–392.

    Google Scholar 

  • Matveyeva, N. V. (1994). Floristic classification and ecology of tundra vegetation of the Taymyr Peninsula, northern Siberia. Journal of Vegetation Science, 5, 813–828.

    Google Scholar 

  • Matveyeva, N. V., 1998: Zonation in plant cover of the Arctic. Russian Academy of Sciences, Proceedings of the Komarov Botanical Institute, No. 21, 220 pp. (in Russian).

    Google Scholar 

  • McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Yi, Y., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., & Williams, M. (2012). An assessment of the carbon balance of arctic tundra: Comparisons among observations, process models, and atmospheric inversions. Biogeosciences Discussions, 9, 4543–4594.

    Google Scholar 

  • McKane, R. B., Rastetter, E. B., Shaver, G. R., Nadelhoffer, K. J., Giblin, A. E., Laundre, J. A., & Capin, F. S., III. (1997). Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology, 78, 1170–1187.

    Google Scholar 

  • Moen, J., Lundberg, P. A., & Oksanen, L. (1993). Lemming grazing on snowbed vegetation during a population peak, Northern Norway. Arctic and Alpine Research, 25, 130–135.

    Google Scholar 

  • Muraoka, H., Uchida, M., Mishio, M., Nakatsubo, T., Kanda, H., & Koizumi, H. (2002). Leaf photosynthesis characteristics and net primary production of the polar willow (Salix polaris) in a High Arctic polar semi-desert, Ny-Ålesund, Svalbard. Canadian Journal of Botany, 80, 1193–1202.

    Google Scholar 

  • Murray, D. F. (1995). Causes of arctic plant diversity: Origin and evolution. In F. S. Chapin III & C. Körner (Eds.), Arctic and alpine biodiversity (Ecological Studies) (Vol. 113, pp. 21–32).

    Google Scholar 

  • Myers-Smith, I. H., Arnesen, B. K., Thompson, R. M., & Chapin, F. S., III. (2006). Cumulative impact on Alaskan arctic tundra of a quarter century of road dust. Ecoscience, 13, 503–510.

    Google Scholar 

  • Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R., & Linkins, A. E. (1992). Microbial processes and plant nutrient availability in Arctic soils. In F. S. Chapin III, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, J. Svoboda, & E. W. Chu (Eds.), Arctic ecosystems in a changing climate: An Ecophysiological perspective (pp. 281–300). New York: Academic.

    Google Scholar 

  • Oechel, W. C., Strain, B. R., & Odening, W. R. (1972). Tissue water potential, photosynthesis, 14C-labelled photosynthate utilization, and growth in the desert shrub Larrea divaricate Cav. Ecological Monographs, 42, 127–141.

    Google Scholar 

  • Øvstedal, D. O., Tønsberg, T., & Elvebakk, A. (2011). The lichen flora of Svalbard. Sommerfeltia, 33, 3–393.

    Google Scholar 

  • Parnikoza, I., Kozeretska, I., & Kunakh, V. (2011). Vascular plants of the maritime Antarctic: Origin and adaptions. American Journal of Plant Sciences, 2, 381–395.

    Google Scholar 

  • Peat, H. J., Clarke, A., & Convey, P. (2007). Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132–146.

    Google Scholar 

  • Pollard, W. (2017). Periglacial processes in glacial environment. In J. Menzies & J. J. M. van der Meer (Eds.), Post-glacial environments (2nd ed., pp. 537–564). Elsevier.

    Google Scholar 

  • Polunin, N. (1951). The real Arctic: Suggestions for its delimitation, subdivision and characterization. Journal of Ecology, 39, 308–315.

    Google Scholar 

  • Prach, K., Košnar, J., Klimešova, J., & Hais, M. (2010). High arctic vegetation after 70 years: A repeated analysis from Svalbard. Polar Biology, 33, 635–639.

    Google Scholar 

  • Rannie, W. F. (1986). Summer air temperature and number of vascular species in arctic Canada. Arctic, 39, 133–137.

    Google Scholar 

  • Raymond, B., McInnes, J., Dambacher, J. M., Way, S., & Bergstrom, D. M. (2011). Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. Journal of Applied Ecology, 48, 181–191.

    Google Scholar 

  • Rosswall, T., Flower-Ellis, J. G. K., Johansson, L. G., Jonsson, S., Ryden, B. E., & Sonesson, M. (1975). Stordalen (Abisko), Sweden. In T. Rosswall & O. W. Heal (Eds.), Structure and Function of tundra ecosystems (Ecological Bulletin (Stockholm)) (Vol. 20, pp. 265–294).

    Google Scholar 

  • Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591–602.

    Google Scholar 

  • Schneeweiss, G. M., Schönswetter, P., Kelso, S., & Niklfeld, H. (2004). Complex biogeographic patterns in Androsace (Primulaceae) and related genera: Evidence from phylogenetic analyses of nuclear internal transcribed spacer and plastid trnL-F sequences. Systematic Biology, 53, 856–876.

    PubMed  Google Scholar 

  • Schönswetter, P., Paun, O., Tribsch, A., & Niklfeld, H. (2003). Out of the Alps: Colonization of Northern Europe by east alpine populations of the glacier buttercup Ranunculus glacialis L. (Ranunculaceae). Molecular Ecology, 12, 3373–3381.

    PubMed  Google Scholar 

  • Semikhatova, O. A., Gerasimenko, T. V., & Ivanova, T. I. (1992). Photosynthesis, respiration, and growth of plants in the Soviet Arctic. In I. I. I. F. S. Chapin, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, J. Svoboda, & E. W. Chu (Eds.), Arctic ecosystems in a changing climate: An ecophysiological perspective (pp. 169–192). New York: Academic.

    Google Scholar 

  • Shaver, G. R., & Chapin, F. S., III. (1991). Production: Biomass relationships and element cycling in contrasting Arctic vegetation types. Ecological Monographs, 61, 1–31.

    Google Scholar 

  • Sitch, S., McGuire, A. D., Kimball, J., Gedney, N., Gamon, J., Engstrom, R., Wolf, A., Zhuang, Q., Clein, J., & McDonald, K. C. (2007). Assessing the carbon balance of circumpolar arctic tundra using remote sensing and process modelling. Ecological Applications, 17, 213–234.

    PubMed  Google Scholar 

  • Skrede, I., Eidesen, P. B., Portela, R. P., & Brochmann, C. (2006). Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology, 15, 1827–1840.

    CAS  PubMed  Google Scholar 

  • Starr, G., & Oberbauer, S. F. (2003). Photosynthesis of arctic evergreens under snow: Implications for tundra ecosystem carbon balance. Ecology, 84, 1415–1420.

    Google Scholar 

  • Starr, G., Oberbauer, S. F., & Ahlquist, L. E. (2008). The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arctic, Antarctic, and Alpine Research, 40, 181–191.

    Google Scholar 

  • Storch, V., Welsch, U., & Wink, M. (2013a). Evolution – genetische und zellbiologische Grundlagen. In V. Storch, U. Welsch, & M. Wink (Eds.), Evolutionsbiologie (3rd ed., pp. 220–305). Heidelberg: Springer Spektrum.

    Google Scholar 

  • Storch, V., Welsch, U., & Wink, M. (2013b). Molekulare Evolutionsforschung: Methoden, Phylogenie, Merkmalsevolution und Phylogeographie. In V. Storch, U. Welsch, & M. Wink (Eds.), Evolutionsbiologie (3rd ed., pp. 305–416). Heidelberg: Springer Spektrum.

    Google Scholar 

  • SWIPA (Snow, Water, Ice, and Permafrost in the Arctic Assessment). (2011). Executive summary, Arctic Monitoring and Assessment Program (AMAP) Secretariat, Oslo, Norway, 16 pp., available at: www.amap.no

  • Takh, N. V., Röser, M., & Hoffmann, M. H. (2008). Range size variation and diversity distribution in the vascular plant flora of the Eurasian Arctic. Organisms, Diversity and Evolution, 8, 251–266.

    Google Scholar 

  • Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. p. 11.

    Google Scholar 

  • Thannheiser, D., & Wüthrich, C. (2004). Spitzbergen Svalbard. In C. A. Burga, F. Klötzli, & G. Grabherr (Hrsg.), Gebirge der Erde. (pp. 240–248). Stuttgart: E. Ulmer.

    Google Scholar 

  • CAVM Team. (2003). Circumpolar Arctic Vegetation Map. Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska (http://www.geobotany.uaf.edu 2013).

  • Tenhunen, J. D., Lange, O. L., Hahn, S., Siegwolf, R., & Oberbauer, S. F. (1992). The ecosystem role of poikilohydric tundra plants. In F. S. Chapin III, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, J. Svoboda, & E. W. Chu (Eds.), Arctic ecosystems in a changing climate: An ecophysiological perspective (pp. 213–237). New York: Academic.

    Google Scholar 

  • Thannheiser, D. (1987). Die Vegetationszonen in der westlichen kanadischen Arktis. Hamburger Geographische Studien, 43, 159–177.

    Google Scholar 

  • Thannheiser, D. (1991). Die Küstenvegetation der arktischen und borealen Zone. Berichte der Reinhold-Tüxen-Gesellschaft, 3, 21–42.

    Google Scholar 

  • Thannheiser, D. (1996). Spitzbergen. Ressourcen und Erschließung einer hocharktischen Inselgruppe. Geographische Rundschau, 48, 268–274.

    Google Scholar 

  • Tolmatchev, A. I. (1966). Die Evolution der Pflanzen in arktisch-Eurasien während und nach der quaternären Vereisung. Botanisk Tidsskrift, 62, 27–36.

    Google Scholar 

  • Vincent, W. F. (2020). Arctic climate change: Local impacts, global consequences, and policy implications. In K. Coates & C. Holroyd (Eds.), The Palgrave handbook of Arctic policy and politics (pp. 507–526). Cham: Springer.

    Google Scholar 

  • Vincent, W. F., Lemay, M., & Allard, M. (2017). Arctic permafrost landscapes in transition: Towards an integrated earth system approach. Arctic Science, 3, 39–64.

    Google Scholar 

  • Virtanen, T., Mikkola, K., Patova, E., & Nikula, A. (2002). Satellite image analysis of human caused changes in the tundra vegetation around the city of Vorkuta, north-European Russia. Environmental Pollution, 120, 647–658.

    CAS  PubMed  Google Scholar 

  • Vonlanthen, C. M., Walker, D. A., Raynolds, M. K., Kade, A., Kuss, P., Daniels, F. J. A., & Matveyeva, N. V. (2008). Patterned-ground plant communities along a bioclimate gradient in the High Arctic, Canada. Phytocoenologia, 38, 23–63.

    Google Scholar 

  • Walker, D. A. (2000). Hierarchical subdivision of arctic tundra based on vegetation response to climate, parent material and topography. Global Change Biology, 6, 19–34.

    Google Scholar 

  • Walker, D. A., Elvebakk, A., Talbot, S. S., & Daniels, F. J. A. (2005a). The second international workshop on circumpolar vegetation classification and mapping: A tribute to Boris A. Yurtsev. Phytocoenologia, 35, 715–725.

    Google Scholar 

  • Walker, D. A., Raynolds, M. K., Daniels, F. J. A., Einarsson, E., Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, K. J., Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A., & the other members of the CAVM Team. (2005b). The circumpolar arctic vegetation map. Journal of Vegetation Science, 16, 267–282.

    Google Scholar 

  • Walter, H., Breckle, S.-W., Hager, J., Loris, K., & Miehe, G. (1991). Ökologie der Erde. In Gemäßigte und arktische Zonen außerhalb Euro-Nordasiens (Vol. 4, 586 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Washburn, A. L. (1973). Periglacial processes and environments (320 pp). London: Edward Arnold.

    Google Scholar 

  • Washburn, A. L. (1979). Geocryology: A survey of Periglacial processes and environments (406 pp). London: Edward Arnold.

    Google Scholar 

  • Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273–309.

    Google Scholar 

  • Wüthrich, C. (1994). Die biologische Aktivität arktischer Böden mit spezieller Berücksichtigung ornithogen eutrophierter Gebiete (Spitzbergen und Finnmark). Physiogeographica (Basel), 17, 222.

    Google Scholar 

  • Wüthrich, C., & Thannheiser, D. (2002). Die Polargebiete (299 pp). Braunschweig: Westermann.

    Google Scholar 

  • Young, S. B. (1971). The vascular flora of St. Lawrence Island with special reference to floristic zonation in the arctic regions. Contributions from the Gray Herbarium, 201, 11–115.

    Google Scholar 

  • Yurtsev, B. A. (1994). Floristic division of the Arctic. Journal of Vegetation Science, 5, 765–776.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer Spektrum.

    Google Scholar 

  • Zepp, H. (2003). Geomorphologie. Eine Einführung (2nd ed., 354 pp). Paderborn: Ferdinand Schöningh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Vegetation of the Polar Zone. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_14

Download citation

Publish with us

Policies and ethics