Skip to main content

Metabolic Stress and Immunity: Nutrient-Sensing Kinases and Tryptophan Metabolism

  • Chapter
  • First Online:
Protein Kinase-mediated Decisions Between Life and Death

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1275))

  • 1593 Accesses

Abstract

The tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO-1) has gained major attention due the immunoregulatory nature of this pathway. Both depletion of tryptophan concentrations as well as the accumulation of downstream metabolites are relevant for the mediation of the manifold consequences of increased tryptophan metabolism. Increased tryptophan catabolism is indicative for several chronic inflammatory disorders such as infections, autoimmune diseases or cancer. Low tryptophan availability is likely to be involved in the manifestation of a variety of comorbidities such as anemia, cachexia, depression and neurocognitive disturbances.

Several nutrient sensing kinases are implicated in the downstream effects of dysregulated tryptophan metabolism. These include mechanisms that were conserved during evolution but have gained special features in multicellular eukaryotes, such as pathways regulated by eukaryotic translation initiation factor 2 (eIF-2)-alpha kinase (GCN2, also named general control nonderepressible 2 kinase), 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and target of rapamycin (TOR).

The interplay between IDO-1 and above-mentioned pathway seems to be highly context dependent. A better understanding of the crosstalk is necessary to support the search for druggable targets for the treatment of inflammatory and autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bach EA, Aguet M, Schreiber RD. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol. 1997;15:563–91.

    Article  CAS  PubMed  Google Scholar 

  • Battu S, Minhas G, Mishra A, Khan N. Amino acid sensing via general control nonderepressible-2 kinase and immunological programming. Front Immunol. 2017;8

    Google Scholar 

  • Bishnupuri KS, Alvarado DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK, Ciorba MA. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic Colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;79:1138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-γ. Annu Rev Immunol. 1997;15:749–95.

    Article  CAS  PubMed  Google Scholar 

  • Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer. 2017;76:167–82.

    Article  CAS  PubMed  Google Scholar 

  • Carnaud C, Lee D, Donnars O, Park S-H, Beavis A, Koezuka Y, Bendelac A. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol. 1999;163:4647–50.

    CAS  PubMed  Google Scholar 

  • Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell. 2015;161:67–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Guo W, Liu X, Sun P, Wang Y, Ding C, Meng L, Zhang A. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem. 2019;179:38–55.

    Article  CAS  PubMed  Google Scholar 

  • Chuang H-C, Lan J-L, Chen D-Y, Yang C-Y, Chen Y-M, Li J-P, Huang C-Y, Liu P-E, Wang X, Tan T-H. The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-θ in T cells. Nat Immunol. 2011;12:1113–8.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci. 2013;70:3493–511.

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase depletes tryptophan, activates general control non-derepressible 2 kinase and down-regulates key enzymes involved in fatty acid synthesis in primary human CD4+ T cells. Immunology. 2015;146:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I. IDO decreases glycolysis and glutaminolysis by activating GCN2K, while it increases fatty acid oxidation by activating AhR, thus preserving CD4+ Tcell survival and proliferation. Int J Mol Med. 2018;42:557–68.

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–77.

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P. T cell apoptosis by kynurenines. Adv Exp Med Biol. 2003;527:183–90.

    Article  CAS  PubMed  Google Scholar 

  • Finkelman FD, Katona IM, Mosmann TR, Coffman RL. IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol. 1988;140:1022–7.

    CAS  PubMed  Google Scholar 

  • Fougeray S, Mami I, Bertho G, Beaune P, Thervet E, Pallet N. Tryptophan depletion and the kinase GCN2 mediate IFN-γ–induced autophagy. J Immunol. 2012;189:2954–64.

    Article  CAS  PubMed  Google Scholar 

  • Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by Indoleamine 2,3-dioxygenase. J Exp Med. 2002;196:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs D, Möller AA, Reibnegger G, Werner ER, Werner-Felmayer G, Dierich MP, Wachter H. Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection. Immunol Lett. 1991;28:207–11.

    Article  CAS  PubMed  Google Scholar 

  • Goberdhan DC, Wilson C, Harris AL. Amino acid sensing by mTORC1: intracellular transporters mark the spot. Cell Metab. 2016;23:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin-Ethier J, Hanafi L-A, Piccirillo CA, Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res. 2011;17:6985–91.

    Article  CAS  PubMed  Google Scholar 

  • Gostner JM, Becker K, Überall F, Fuchs D. The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment. Expert Opin Ther Targets. 2015;19:605–15.

    Article  CAS  PubMed  Google Scholar 

  • Gowans GJ, Hardie DG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans. 2014;42:71–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J, Zeyher C, Gouttefangeas C, Thomsen BM, Holm B, Thor Straten P, Mellemgaard A, Andersen MH, Svane IM. Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from Indoleamine 2,3 dioxygenase. Clin Cancer Res. 2014;20:221–32.

    Article  CAS  PubMed  Google Scholar 

  • Jusof FF, Bakmiwewa SM, Weiser S, Too LK, Metz R, Prendergast GC, Fraser ST, Hunt NH, Ball HJ. Investigation of the tissue distribution and physiological roles of indoleamine 2,3-dioxygenase-2. Int J Tryptophan Res. 2017;10:1178646917735098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metabol. 2009;20:436–43.

    Article  CAS  Google Scholar 

  • Knox WE. The regulation of tryptophan pyrrolase activity by tryptophan. Adv Enzym Regul. 1966;4:287–97.

    Article  CAS  Google Scholar 

  • Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz K, Schroecksnadel S, Weiss G, Fuchs D. Association between increased tryptophan degradation and depression in cancer patients. Curr Opin Clin Nutr Metab Care. 2011;14:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan–kynurenine–aryl hydrocarbon axis. Clin Cancer Res. 2019;25:1462–71.

    Article  CAS  PubMed  Google Scholar 

  • Metz R, Rust S, Duhadaway JB, Mautino MR, Munn DH, Vahanian NN, Link CJ, Prendergast GC. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. OncoImmunology. 2012;1:1460–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, Wada H, Takeuchi S, Noma A, Seishima M. L-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Adv Exp Med Biol. 1999;467:559–63.

    Article  CAS  PubMed  Google Scholar 

  • Munn DH. Blocking IDO activity to enhance anti-tumor immunity. Front Biosci (Elite Ed). 2012;4:734–45.

    Article  Google Scholar 

  • Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–43.

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Johnson TS, Rodriguez P. IDO, PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment. Cancer Immunol Immunother. 2017;66:1049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connor JC, Lawson MA, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;2009(14):511–22.

    Article  CAS  Google Scholar 

  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203.

    Article  CAS  PubMed  Google Scholar 

  • Perez RP, Riese MJ, Lewis KD, Saleh MN, Daud A, Berlin J, Lee JJ, Mukhopadhyay S, Zhou L, Serbest G, Hamid O. Epacadostat plus nivolumab in patients with advanced solid tumors: preliminary phase I/II results of ECHO-204. J Clin Oncol. 2017;35:3003.

    Article  Google Scholar 

  • Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, Maddur MS, Park Y, Jones DP, Chappert P, Davoust J, Weiss DS, Virgin HW, Ron D, Pulendran B. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science. 2014;343:313–7.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez Cetina Biefer H, Vasudevan A, Elkhal A. Aspects of tryptophan and nicotinamide adenine dinucleotide in immunity: a new twist in an old tale. Int J Tryptophan Res. 2017;10:1178646917713491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenblat JD, Mcintyre RS. Efficacy and tolerability of minocycline for depression: a systematic review and meta-analysis of clinical trials. J Affect Disord. 2018;227:219–25.

    Article  CAS  PubMed  Google Scholar 

  • Sasai M, Sakaguchi N, Ma JS, Nakamura S, Kawabata T, Bando H, Lee Y, Saitoh T, Akira S, Iwasaki A, Standley DM, Yoshimori T, Yamamoto M. Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nat Immunol. 2017;18:899–910.

    Article  CAS  PubMed  Google Scholar 

  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169:361–71.

    Article  CAS  PubMed  Google Scholar 

  • Schröder M, Kroeger KM, Volk H-D, Eidne KA, Grütz G. Preassociation of nonactivated STAT3 molecules demonstrated in living cells using bioluminescence resonance energy transfer: a new model of STAT activation? J Leukoc Biol. 2004;75:792–7.

    Article  PubMed  CAS  Google Scholar 

  • Schroecksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. 2006;364:82–90.

    Article  CAS  Google Scholar 

  • Schroecksnadel K, Zangerle R, Bellmann-Weiler R, Garimorth K, Weiss G, Fuchs D. Indoleamine-2, 3-dioxygenase and other interferon-gamma-mediated pathways in patients with human immunodeficiency virus infection. Curr Drug Metab. 2007;8:225–36.

    Article  CAS  PubMed  Google Scholar 

  • Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F. NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity. 2003;19:571–82.

    Article  CAS  PubMed  Google Scholar 

  • Soliman HH, Jackson E, Neuger T, Dees CE, Harvey DR, Han H, Ismail-Khan R, Minton S, Vahanian NN, Link C, Sullivan DM, Antonia S. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget. 2014;5

    Google Scholar 

  • Sonner JK, Deumelandt K, Ott M, Thomé CM, Rauschenbach KJ, Schulz S, Munteanu B, Mohapatra S, Adam I, Hofer A-C, Feuerer M, Opitz CA, Hopf C, Wick W, Platten M. The stress kinase GCN2 does not mediate suppression of antitumor T cell responses by tryptophan catabolism in experimental melanomas. OncoImmunology. 2016;5:e1240858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souza LC, Jesse CR, De Gomes MG, Del Fabbro L, Goes ATR, Donato F, Boeira SP. Activation of brain indoleamine-2,3-dioxygenase contributes to depressive-like behavior induced by an intracerebroventricular injection of streptozotocin in mice. Neurochem Res. 2017;42:2982–95.

    Article  CAS  PubMed  Google Scholar 

  • Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H, Whitman M, Keller T, Rao A. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science. 2009;324:1334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timosenko E, Ghadbane H, Silk JD, Shepherd D, Gileadi U, Howson LJ, Laynes R, Zhao Q, Strausberg RL, Olsen LR, Taylor S, Buffa FM, Boyd R, Cerundolo V. Nutritional stress induced by tryptophan-degrading enzymes results in ATF4-dependent reprogramming of the amino acid transporter profile in tumor cells. Cancer Res. 2016;76:6193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Velde L-A, Guo X-ZJ, Barbaric L, Smith AM, Oguin TH, Thomas PG, Murray PJ. Stress kinase GCN2 controls the proliferative fitness and trafficking of cytotoxic T cells independent of environmental amino acid sensing. Cell Rep. 2016;17:2247–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verberne T, Sabetghadam A, Korim W. Neural pathways that control the glucose counterregulatory response. Front Neurosci. 2014;8

    Google Scholar 

  • Wang Q-S, Shen S-Q, Sun H-W, Xing Z-X, Yang H-L. Interferon-gamma induces autophagy-associated apoptosis through induction of cPLA2-dependent mitochondrial ROS generation in colorectal cancer cells. Biochem Biophys Res Commun. 2018;498:1058–65.

    Article  CAS  PubMed  Google Scholar 

  • Werner ER, Hirsch-Kauffmann M, Fuchs D, Hausen A, Reibnegger G, Schweiger M, Wachter H. Interferon-gamma-induced degradation of tryptophan by human cells in vitro. Biol Chem Hoppe Seyler. 1987;368:1407–12.

    Article  CAS  PubMed  Google Scholar 

  • Young HA, Hardy KJ. Role of interferon-γ in immune cell regulation. J Leukoc Biol. 1995;58:373–81.

    Article  CAS  PubMed  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.

    Article  CAS  PubMed  Google Scholar 

  • Zuo H, Ueland PM, Ulvik A, Eussen SJPM, Vollset SE, Nygård O, Midttun Ø, Theofylaktopoulou D, Meyer K, Tell GS. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: the hordaland health study. Am J Epidemiol. 2016;183:249–58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Kurz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gostner, J.M., Fuchs, D., Kurz, K. (2021). Metabolic Stress and Immunity: Nutrient-Sensing Kinases and Tryptophan Metabolism. In: Engin, A.B., Engin, A. (eds) Protein Kinase-mediated Decisions Between Life and Death. Advances in Experimental Medicine and Biology, vol 1275. Springer, Cham. https://doi.org/10.1007/978-3-030-49844-3_16

Download citation

Publish with us

Policies and ethics