We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Plate, Shell, and Solid Structures | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Plate, Shell, and Solid Structures

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Finite Elements in Structural Analysis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 2873 Accesses

Abstract

In this chapter the finite element method is considered as a general method for the analysis of plate and solid structures. While the method for truss and beam structures – as it has been treated so far – is exact, for plate and solid structures it can no longer be formulated as an exact method, i.e. here only an approximate solution is obtained by a finite element analysis. The topic of the first part of the chapter is the basic finite element theory of plate, shell and solid structures. After a short historical outline the chapter begins by explaining the approximate character of the finite element method for the example of a tapered truss element. Many characteristic properties of a finite element analysis even for surface and solid structures can be understood studying this basic element. It is followed by the derivation of a rectangular plane stress element used in the analysis of plates in plane stress. Further formulations of finite elements for plates in plane stress are discussed. The next sections deal with plates in bending. To explain the basic concept, a shear flexible rectangular plate element is derived. Advanced formulations for shear flexible and shear stiff plate elements and their properties are discussed. Elements for shells and three-dimensional solids including axisymmetric elements are treated in the following. A particular section addresses the problem of the connection of different types of elements as e.g. beam with plate elements. The second also very comprehensive part of the chapter is dedicated to the modelling of structural elements and buildings with finite elements. General aspects such as mesh generation, the required mesh size, the influence of singularities, the edge effect in bending plates are discussed in detail and illustrated by examples. In the same way the modelling of columns in deep beams and slabs, of RC beams partly integrated in slabs and of mounting parts are treated. An own section deals with the modelling of soil for foundation slabs. Continuum models of layered soils as well as subgrade reaction and two-parameter models are surveyed and compared concerning their practical application. The finite element analysis of three-dimensional building models is the topic of another section. The influence of taking into account construction stages is investigated in detail. The final section of the chapter deals with quality assurance of finite element analyses. It includes some aspects of estimations of the discretization error. The chapter concludes with some remarks on the documentation of finite elements computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritz W (1908) Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, Zeitschrift für Angewandte Mathematik und Mechanik, vol 135, H 1, 47–55

    Google Scholar 

  2. Galerkin BG (1915) Series occurring in various questions concerning the elastic equilibrium of rods and plates. Engineers Bulletin (Vestnik Inzhenerov) 19:897–908 (in Russian)

    Google Scholar 

  3. Argyris JH (1957) Die Matrizentheorie der Statik, Ingenieurarchiv 25. Springer, Berlin, 174–194

    MATH  Google Scholar 

  4. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:803–823, 853

    Google Scholar 

  5. Clough RW (1960) The finite element in plane stress analysis. In: Proceedings 2nd ASCE conference on electronic computation, Pittsburgh, Pa

    Google Scholar 

  6. Clough RW (1970) Areas of application of the finite element method, computers & structures 4. Pergamon Press, Oxford

    Google Scholar 

  7. Zienkiewicz OC (1977) The finite element method. McGraw-Hill Book Company Maidenhead Berkshire, England

    MATH  Google Scholar 

  8. Argyris J, Mlejnek H-P (1986) Die Methode der Finiten Element Band 1. Vieweg, Braunschweig

    Google Scholar 

  9. Bathe K-J, Wilson E (1976) Numerical methods in finite element analysis. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  10. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, Nurbs, Exact Geometry and Mesh Refinement. Comput Methods Appl Mech Eng 194 (39–41):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  11. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, vol 139, Issue 1–4. Elsevier, 3–47

    Google Scholar 

  12. Gupta KK, Meek JL (1996) A brief history of the beginning of the finite element method. International journal for numerical methods in Eng 39:3761–3774 (Wiley)

    Google Scholar 

  13. Clough RW (2004) Early history of the finite element method from the view point of a pioneer. Int J Numer Methods Eng 60:283–287 (Wiley)

    Google Scholar 

  14. Hahn M, Reck M (2018) Kompaktkurs Finite Elemente für Einsteiger. Springer, Wiesbaden

    Book  Google Scholar 

  15. Rannacher R, Stein E, Ramm E, Schweizerhof K, Möller KH, Bayer U et al. (1997) Finite Elemente: Zur Geschichte der FEM, Spektrum der Wissenschaften, Heidelberg, März

    Google Scholar 

  16. Kurrer K-E (2018) The history of the theory of structures, 2nd edn. Ernst & Sohn, Berlin

    Book  Google Scholar 

  17. Meißner U, Menzel A (1989) Die Methode der finiten Elemente. Springer, Berlin

    Book  Google Scholar 

  18. Krätzig WB, Basar Y (1997) Tragwerke 3 – Theorie und Anwendung der Methode der Finiten Elemente. Springer, Berlin

    Google Scholar 

  19. Knothe K, Wessels H (2017) Finite elemente, 5th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Kämmel G, Franeck H, Recke H-G (1990) Einführung in die Methode der Finiten Elemente. Carl Hanser Verlag, München

    MATH  Google Scholar 

  21. Klein B (2015) FEM - Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau, 10th edn. Springer Vieweg, Wiesbaden

    Google Scholar 

  22. Betten J (2003) Finite Elemente für Ingenieure 1, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  23. Steinbuch R (1998) Finite Elemente – ein Einstieg. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Wagner M (2017) Lineare und nichtlineare FEM. Springer Vieweg, Wiesbaden

    Book  Google Scholar 

  25. Neto MA, Amaro A, Roseiro L, Cirne J, Leal R (2015) Engineering computation of structures: the finite element method. Springer International, Cham, Switzerland

    Book  Google Scholar 

  26. Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis. Wiley, New York

    Google Scholar 

  27. Gallagher RH (1975) Finite element analysis — fundamentals. Prentice Hall Inc, Englewood Cliffs, NJ, USA

    Google Scholar 

  28. Szilard R (1990) Finite Berechnungsmethoden der Strukturmechanik, Band 2: Flächentragwerke im Bauwesen, Ernst & Sohn, Berlin

    Google Scholar 

  29. Wunderlich W, Redanz W (1995) Die Methode der Finiten Elemente, Der Ingenieurbau – Rechnerorientierte Baumechanik. Ernst & Sohn, Berlin

    Google Scholar 

  30. Thieme D (1990) Einführung in die Finite-Element-Methode für Bauingenieure. Verlag für Bauwesen, Berlin

    Google Scholar 

  31. Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice Hall Inc, Englewood Cliffs, NJ, USA

    Google Scholar 

  32. Steinke P (2015) Finite-elemente-methode, 5th edn. Springer, Wiesbaden

    MATH  Google Scholar 

  33. Irons BM, Razzaque A (1972) Experience with a patch test for convergence of finite elements. The mathematical foundations of the finite element method with application to partial differential equations. Academic Press, New York, 557–582

    Google Scholar 

  34. Bathe K-J (2014) Finite element procedures, 2nd edn. K-J Bathe, Watertown, MA (2014). http://meche.mit.edu/people/faculty/kjb@mit.edu; also published by Higher Education Press China 2016

  35. Könke C, Krätzig WB, Meskouris K, Petryna YS (2012) Theorie der Tragwerke. In: Zilch K, Diederichs CJ, Katzenbach R, Beckmann KJ (eds) Handbuch für Bauingenieure, 2nd edn. Springer, Heidelberg

    Google Scholar 

  36. Betten J (2004) Finite Elemente für Ingenieure 2, 2nd edn. Springer, Berlin

    Google Scholar 

  37. Dhatt G, Touzot G et al. (1984) The finite element method displayed. Wiley, Chichester New York

    Google Scholar 

  38. Bathe K-J (1996) Solutions manual, finite element procedures. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  39. Belytschko T, Liu WK, Moran B, Elkhodary K (2001) Nonlinear finite elements for continua and structures, 2nd edn. Wiley

    Google Scholar 

  40. Hughes TJR (2000) The finite element method. Dover, Mineola

    MATH  Google Scholar 

  41. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. Numer Comput Methods Struct Mech 43–57

    Google Scholar 

  42. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Meth Eng 10:1211–1219

    Article  MATH  Google Scholar 

  43. Wilson E, Ibrahimbegovic A (1990) Use of incompatible displacement modes for the calculation of element stiffness and stresses. Finite Elem Anal Des 7:229–241

    Article  Google Scholar 

  44. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  45. Koschnik F (2004) Geometrische Locking-Effekte bei Finiten Elementen und ein allgemeines Konzept zu ihrer Vermeidung, Dissertation, Technische Universität München

    Google Scholar 

  46. Lee Y, Lee PS, Bathe K-J (2014) The MITC3 + shell element and its performance. Comput Struct 138:12–23

    Google Scholar 

  47. Ko Y, Lee PS, Bathe K-J (2017) A new MITC4 + shell element. Comput Struct 182:404–418

    Article  Google Scholar 

  48. Ko Y, Lee Y, Lee PS, Bathe K-J (2017) Performance of the MIT3 + and MIT4 + shell elements in widly-used benchmark problems. Comput Struct 193:187–206

    Article  Google Scholar 

  49. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distribution. AIAA J

    Google Scholar 

  50. Pian THH, Sumihara K (1984) Rational Approach for Assumed Stress Finite Elements. Int J Numer Methods Eng 20:1685–1695

    Article  MATH  Google Scholar 

  51. Walder U (1977) Beitrag zur Berechnung von Flächentragwerken nach der Methode der Finiten Elemente, Dissertation, Institut für Baustatik und Konstruktion, ETH Zürich

    Google Scholar 

  52. Bergan PG, Felippa CA (1985) A triangular membrane element with rotational degrees of freedom. Computer methods in applied mechanics and engineering, vol 50. Elsevier BV, Amsterdam, Niederlande

    Google Scholar 

  53. Alvin K, de la Fuente HM, Haugen B, Felippa CA (1992) Membrane triangles with corner drilling freedoms. Report no CU-CSSC-91-24, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado

    Google Scholar 

  54. Ibrahimbegovic A, Taylor RL, Wilson EL (1990) A robust membrane quadrilateral element with drilling degrees of freedom. Int J Numer Meth Eng 30(3):445–457

    Article  MATH  Google Scholar 

  55. Ibrahimbegovic A, Wilson EL (1991) A unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of freedom. Commun Appl Numer Methods 7:1–9

    MATH  Google Scholar 

  56. Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method, society for industrial and applied mathematics (SIAM). J Numer Anal 18:512–545

    Google Scholar 

  57. Szabo B, Babuschka I (1991) Finite element analysis. Wiley, New York

    Google Scholar 

  58. Bellmann J, Rank E (1989) Die p- und hp-Version der Finite-Element-Methode – oder: Lohnen sich höherwertige Elemente? Bauingenieur 64: 67–72

    Google Scholar 

  59. Heil W, Sauer R, Schweitzerhof K, Vogel U (1995) Berechnungssoftware für den Konstruktiven Ingenieurbau, Bauingenieur 70. Springer, Berlin, 55–64

    Google Scholar 

  60. Hinton E, Owen DRJ, Krause G (1990) Finite Element Programme für Platten und Schalen. Springer, Berlin

    Book  Google Scholar 

  61. Hughes TJR, Taylor RL, Kanoknukulchai W (1977) A simple and efficient finite element for plate bending. Int J Numer Methods Eng 11:1529–1543

    Article  MATH  Google Scholar 

  62. Andelfinger U (1991) Untersuchungen zur Zuverlässigkeit hybrid-gemischter Finiter Elemente für Flächentragwerke, Dissertation, Universität Stuttgart

    Google Scholar 

  63. Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48(3):587–596

    Article  MATH  Google Scholar 

  64. Bathe K-J, Dvorkin E (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  MATH  Google Scholar 

  65. Bletzinger K-U, Bischoff M, Ramm E (2000) A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput Struct 75:321–334

    Article  Google Scholar 

  66. Batoz J-L, Lardeur P (1989) A discrete shear triangular nine DOF element for the analysis of thick to very thin plates. Int J Numer Methods Eng 28:533–560

    Google Scholar 

  67. Przemieniecki JS (1968) Theory of matrix structural analysis. McGraw-Hill, New York

    Google Scholar 

  68. Chapelle D, Bathe K-J (2011) The finite element analysis of shells –fundamentals (2nd edn). Springer, Berlin

    Google Scholar 

  69. Pian THH (1965) Element stiffness matrices for boundary compatibility and for prescribed boundary stresses. In: Proceedings first conference on matrix methods in structural mechanics, AFFDL TR, vol 66-80

    Google Scholar 

  70. Pian THH, Tong P (1969) Basis of finite element methods for solid continua. Int J Numer Methods Eng 1:3–28 (Wiley)

    Google Scholar 

  71. Holzer S, Rank E, Werner H (1990) An implementation of the hp-version of the finite element method for Reissner-Mindlin Plate Problems. Int J Numer Methods Eng 30:459–471 (Wiley)

    Google Scholar 

  72. Rank E, Bröcker H, Düster A, Rücker M (2001) Integrierte Modellierungs- und Berechnungssoftware für den konstruktiven Ingenieurbau: Die p-Version und geometrische Elemente, Bauingenieur, 76. Springer, Berlin, 53–61

    Google Scholar 

  73. Batoz J-L, Bathe K-J, Ho L-W (1980) A study of three-node triangular plate bending elements. Int J Numer Methods Eng 15:1771–1812

    Article  MATH  Google Scholar 

  74. Bathe K-J, Ho LW (1981) A simple and effective element for analysis of general shell structures. J Comput Struct 13:673–681

    Google Scholar 

  75. Bathe K-J (2020) Personal communication, e-mail, 8 Apr 2020

    Google Scholar 

  76. Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1

    Google Scholar 

  77. Lee P-S, Bathe K-J (2004) Development of MITC isotropic triangular shell finite elements. Comput Struct 11–12, 82:945–962

    Google Scholar 

  78. Taylor RL, Simo JC (1985) Bending and membrane elements for analysis of thick and thin shells. In: Proceedings of the NUMEETA 1985 conference, Swansea, Wales

    Google Scholar 

  79. Tessler A, Hughes TJR (1983) An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element. Comput Methods Appl Mech Eng 39:311–335

    Article  MATH  Google Scholar 

  80. Hartmann F, Katz C (2007) Structural analysis with finite elements, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  81. Bischoff M (1999) Theorie und Numerik einer dreidimensionalen Schalenformulierung, Dissertation, Institut für Baustatik, Bericht 30, Universität Stuttgart

    Google Scholar 

  82. Cook RD (1989) Finite element modeling for stress analysis. Wiley, New York

    Google Scholar 

  83. Grafton PE, Strome DR (1963) Analysis of axi-symmetric shells of revolution by the direct stiffness method. J AIAA 1:2342–2347

    Google Scholar 

  84. Nemec I, Kolar V, Sevcik I, Vlk Z, Blaauwendraat J, Bucek J, Teply B, Novak D, Stembera V (2010) Finite element analysis of structures. Shaker Verlag, Aachen

    Google Scholar 

  85. Wilson EL (1965) Structural analysis of axisymmetric solids. AIAA J 3(12):2269–2274

    Article  Google Scholar 

  86. Buck KE (1973) Rotationskörper unter beliebiger Belastung. In: Finite Elemente in der Statik, Ernst & Sohn, Berlin

    Google Scholar 

  87. Werkle H, Friedrich T, Sutter J (2000) Modellierung von Stützen mit Pilzkopfverstärkung bei Flachdecken, 5. FEM/CAD-Tagung, Technische Universität Darmstadt, 2000, Festschrift Bauinformatik, Werner-Verlag, Düsseldorf

    Google Scholar 

  88. Werkle H (2002) Analysis of flat slabs by the finite element method, ASEM’02. Pusan, Korea

    Google Scholar 

  89. Werkle H (2002) Modelling of connections between dissimilar finite element domains by transition elements. WCCM V, Wien

    Google Scholar 

  90. Werkle H (2005) Modeling of connections of beam and shell elements in finite element analysis. NAFEMS world congress, Malta

    Google Scholar 

  91. Kugler J (1999) Finite-Element-Modellierung von Starrkörper- und Übergangsbedingungen in der Statik, Dissertation, Universität Karlsruhe, Institut für Baustatik, Bericht 5

    Google Scholar 

  92. Wagner W, Gruttmann F (2002) Modeling of shell-beam transitions in the presence of finite rotations. Comput Assist Mech Eng Sci 9:405–418

    MATH  Google Scholar 

  93. Bathe K-J, Ho LW (1981) Some results in the analysis of thin shell structures. In: Wunderlich et al (eds) Nonlinear finite element analysis in structural mechanics. Springer, Berlin, 123–150

    Google Scholar 

  94. Gmür T, Kauten RH (1993) Three-dimensional solid-to-beam transition elements for structural dynamics analysis. Int J Numer Methods Eng 36:1429–1444 (Wiley)

    Google Scholar 

  95. Gmür Th, Schorderet A (1993) A set of three-dimensional solid to shell transition elements for structural dynamics. Comput Struct 46:583–591

    Article  MATH  Google Scholar 

  96. Surana K (1980) Transition finite elements for three-dimensional stress analysis. Int J Numer Methods Eng 7, 15:991–1020 (Wiley)

    Google Scholar 

  97. Werkle H (2000) Konsistente Modellierung von Stützen bei der Finite-Element-Berechnung von Flachdecken, Bautechnik. Ernst & Sohn, Berlin

    Google Scholar 

  98. Werkle H (1981) Ein Randelement zur dynamischen Finite-Element-Berechnung dreidimensionaler Baugrundmodelle, Dissertation, Universität Karlsruhe

    Google Scholar 

  99. Werkle H (1986) Dynamic finite element analysis of three-dimensional soil models with a transmitting element. Earthquake engineering and structural dynamics, vol 14. Wiley, New York, 41–60

    Google Scholar 

  100. Schwer LE (2006) An overview of the asme guide for verification and validation in computational solid mechanics, 5. LS-Dyna Anwenderforum, Ulm

    Google Scholar 

  101. Schwer LE (2005) Verification and validation in computational solid mechanics and the ASME standards commettee, WIT transactions on the built environment, vol 84. WIT Press

    Google Scholar 

  102. VDI 6201 Blatt 1 (2015) Softwaregestützte Tragwerksberechnung - Grundlagen, Anforderungen, Modellbildung, Verein Deutscher Ingenieure eV, Düsseldorf

    Google Scholar 

  103. Szabo B, Babuska I (2011) Introduction to finite element analysis. Wiley, Chichester

    Book  MATH  Google Scholar 

  104. Rombach GA (2011) Finite-Element design of concrete structures, 2nd edn. ICE Publishing, London

    Book  Google Scholar 

  105. Pacoste C, Plos M, Johansson M (2012) Recommendations for finite element analysis for the design of reinforced concrete slabs. KTH - Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  106. Kemmler R, Ramm E (2001) Modellierung mit der Methode der Finiten Elemente. Beton-Kalender 2001, Ernst & Sohn, Berlin, 143–208

    Google Scholar 

  107. Barth C, Rustler W (2013) Finite Elemente in der Baustatik-Praxis, 2nd edn., Beuth-Verlag, Berlin

    Google Scholar 

  108. Timoshenko SP, Goodier JN (1985) Theory of elasticity. McGraw-Hill, Cambridge

    MATH  Google Scholar 

  109. Girkmann K (1986) Flächentragwerke. Springer, Wien

    Google Scholar 

  110. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  111. Lubarda VA (2013) Circular loads on the surface of a half-space: displacement and stress discontinuities under the load. Int J Solids Struct 50, Elsevier, 1–14

    Google Scholar 

  112. Werkle H, Avak R (2003) Finite Elemente. In: Stahlbetonbau aktuell 2003. Bauwerk Verlag, Berlin

    Google Scholar 

  113. Babuska I, Hae-Soo O (1987) Pollution problem of the p- and h–p versions of the finite element method. Communications in applied numerical methods, vol 3, 6. Wiley, 553–561

    Google Scholar 

  114. Rank E, Krause R, Schweinegruber M (1992) Netzadaption durch intelligentes Pre- und Postprocessing, Finite Elemente, Anwendungen in der Baupraxis (Karlsruhe 1991). Verlag Ernst & Sohn, Berlin, 541–551

    Google Scholar 

  115. Hughes TJ, Akin JE (1980) Techniques for developing special finite element shape functions with particular reference to singularities. Int J Numer Methods Eng 15:733–751

    Article  MathSciNet  MATH  Google Scholar 

  116. Welsch M (2016) Bewertung von Spannungsspitzen und Singularitäten in FEM- Rechnungen. In: D. Pieper: 11. Norddeutsches Simulationsforum 2015, Diplomica Verlag, Hamburg

    Google Scholar 

  117. Robinson J (1968) The cre method of testing and the Jakobian shape parameters, reliability of methods for engineering analysis. In: Proceedings of the international conference on Swansea 1986. Pineridge Press, 407–424

    Google Scholar 

  118. Macneal R, Harder RL (1985) A proposed standard set of problems to test finite element accuracy, finite elements in analysis and design. Elsevier, (North-Holland), Amsterdam

    Google Scholar 

  119. Rothe D (2019) Querkräfte und Drillmomente schubweicher Platten, Personal Communication, Sept 2019

    Google Scholar 

  120. Thompson JF (1985) Numerical grid generation. Elsevier Science Ltd

    Google Scholar 

  121. Zienkiewicz OC, Phillips DV (1971) An Automatic Mesh Generation Scheme for Plane and Curved Surfaces by Isoparametric Coordinates. Int J Numer Meth Eng 3:519–528

    Article  MATH  Google Scholar 

  122. Werkle H, Gong D (1993) CAD-unterstützte Generierung ebener Finite-Element-Netze auf der Grundlage von Makroelementen, Bauingenieur 68. Springer, Berlin, 351–358

    Google Scholar 

  123. Owen SJ (1998) A survey of unstructured mesh generation technology. In: Proceedings of the 7th international meshing roundtable, 239–267

    Google Scholar 

  124. Liseikin VD (2010) Grid generation methods, 2nd edn. Springer, Dordrecht

    Google Scholar 

  125. Sorger CG (2012) Generierung von Netzen für Finite Elemente hoher Ordnung in zwei und drei Raumdimensionen, Dissertation, Technische Universität München

    Google Scholar 

  126. Lo SH (1985) A new Mesh generator scheme for arbitrary planar domains. Int J Numer Methods Eng 21:1403–1426

    Article  MATH  Google Scholar 

  127. Zhu JZ, Zienkiewicz O, Hinton E, Wu J (1991) A new approach to the development of automatic quadrilateral Mesh generation. Int J Numer Methods Eng 32:849–866

    Article  MATH  Google Scholar 

  128. Rehle N, Ramm E (1995) Generieren von FE-Netzen für ebene und gekrümmte Flächentragwerke, Bauingenieur 70. Springer, Berlin, 357–364

    Google Scholar 

  129. Rank E, Rücker M, Schweingruber M (1994) Automatische Generierung von Finite-Element-Netzen, Bauingenieur 69. Springer, Berlin

    Google Scholar 

  130. Rank E, Schweingruber M, Sommer M (1993) Adaptive mesh generation and transformation of triangular to quadrilateral meshes. Commun Numer Methods Eng 9:121–129

    Article  MATH  Google Scholar 

  131. Rank E, Krause R, Schweingruber M (1992) Netzadaption durch intelligentes Pre- und Postprocessing, Finite Elemente - Anwendungen in der Bautechnik (Karlsruhe 1991). Ernst & Sohn, Berlin, 541–551

    Google Scholar 

  132. Rehle N, Ramm E (1995) Adaptive Vernetzung bei mehreren Lastfällen, Finite Elemente in der Baupraxis (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  133. Ramm E, Rehle N (1996) Qualitätssicherung durch angepasste FE-Netze – Möglichkeiten und Grenzen, Baustatik-Baupraxis 6, Weimar

    Google Scholar 

  134. Rust W, Stein E (1992) 2D-Finite-Element Mesh adaption in structural mechanics including shell analysis and non-linear calculations. In: Ladeveze P, Zienkiewicz OC (eds) Proceedigns of the conferences europe sur les nouvelles advancées en calcul des structures

    Google Scholar 

  135. Münzner D (2004) Freiformflächen in der Tragwerks- und Objektplanung, Sofistik- Seminar 2004, Sofistik Oberschleißheim

    Google Scholar 

  136. Lo SH (1991) Volume Discretization into Tetrahedra-I. Verification and orientation of boundary surfaces. Comput Struct 39(5):493–500

    Google Scholar 

  137. Lo SH (1991) Volume Discretization into Tetrahedra-II. 3D triangulation by advancing front approach. Comput Struct 39(5):501–511

    Google Scholar 

  138. Tilander S (1994) A finite element mesh generation program, Interner Bericht, Fachhochschule Konstanz, Lehrgebiet Baustatik (Prof Dr-Ing H Werkle)

    Google Scholar 

  139. Schaper G, Spiess G (2000) Nachvollziehbare Beispiele aus der Baupraxis – Berechnungen mit verschiedenen FE-Programmen, Festschrift Bauinformatik zu Ehren von Univ-Prof Dr-Ing habil Udo F. Meißner zum 60. Geburtstag, Hrsg.: U Rüppel, K Wassermann, Werner-Verlag, Düsseldorf

    Google Scholar 

  140. Williams ML (1952) Stress Singularities resulting from various boundary conditions in angular corners of plates in extension. J Appl Mech: 526–528

    Google Scholar 

  141. Rössle A (2000) Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. J Elast 60:57–77

    Article  MATH  Google Scholar 

  142. Schneider M (1999) Finite-Element-Berechnungen von Scheibentragwerken, Diplomarbeit, HTWG Konstanz, Fachbereich Bauingenieurwesen, Lehrgebiet Baustatik (Prof Dr-Ing Horst Werkle), Konstanz

    Google Scholar 

  143. Tompert K (1995) Einige Problemfälle bei FE-Berechnungen aus der Sicht eines Prüfingenieurs, Finite Elemente in der Baupraxis, (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  144. Schäfer K (1995) FE-Berechnung oder Stabwerkmodelle?, Finite Elemente in der Baupraxis, (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  145. Thieme D (1992) Erfahrungen aus 100 Scheibenberechnungen, Finite Elemente, Anwendungen in der Baupraxis (Karlsruhe 1991). Ernst & Sohn, Berlin

    Google Scholar 

  146. Blaauewendraad J (2010) Plates and FEM. Springer, Dortrecht

    Book  Google Scholar 

  147. Melzer H, Rannacher R (1980) Spannungskonzentrationen in Eckpunkten der Kirchhoffschen Platte, Bauingenieur 55. Springer, Berlin, 181–184

    Google Scholar 

  148. Williams ML (1951) Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending. First US congress of applied mechanics. Illinois Institute of Technology, New York/Chicago, 325–329

    Google Scholar 

  149. Rössle A, Sändig A-M (2011) Corner singularities and regularity results for the Reissner/Mindlin plate model. J Elast 103:113–135

    Article  MathSciNet  MATH  Google Scholar 

  150. Häggblad B, Bathe K-J (1990) Specifications of boundary conditions for Reissner/Mindlin plate bending elements. Int J Numer Meth Eng 30:981–1011

    Article  MATH  Google Scholar 

  151. Beyer M, Scharpf D (1985) Zur Frage der Drillmomente an freien Rändern dünner Platten, Finite Elemente - Anwendungen in der Baupraxis (München 1984). Ernst & Sohn, Berlin

    Google Scholar 

  152. Franz G (1983) Konstruktionslehre des Stahlbetonbaus, Band I – Grundlagen und Bauelemente, Teil B Die Bauelemente und ihre Bemessung. Springer, Berlin

    Google Scholar 

  153. Czerny F (1990) Tafeln für Rechteckplatten, Betonkalender 1990. Ernst & Sohn, Berlin

    Google Scholar 

  154. Babuška I, Pitkaranta J (1990) The plate paradox for hard and soft simple Support. SIAM J Math Anal 21(3):551–576

    Article  MathSciNet  MATH  Google Scholar 

  155. Grasser E, Thielen G (1988) Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken nach DIN 1045, Deutscher Ausschuß für Stahlbetonbau, H. 240. Ernst & Sohn, Berlin

    Google Scholar 

  156. Morley LSD (1963) Skew plates and structures. Pergamon Press, Oxford

    MATH  Google Scholar 

  157. Ramm E, Stander N, Stegmüller H (1988) Gegenwärtiger Stand der Methode der Finiten Elemente, Finite Elemente, Anwendungen in der Baupraxis (Bochum 1988). Ernst & Sohn, Berlin

    Google Scholar 

  158. Wegner R (1978) Einfluß der Stützensteifigkeit auf die Zustandsgrößen von Flachdecken, Bauingenieur 53. Springer, Berlin, 169–178

    Google Scholar 

  159. Gerold F (2004) 3D-Modellierung von Gebäuden mit der Methode der Finiten Elemente, Diplomarbeit, Fachhochschule Konstanz, Fachbereich Bauingenieurwesen, Lehrgebiet Baustatik (Prof Dr-Ing H Werkle), Konstanz

    Google Scholar 

  160. Werkle H, Gerold F (2005) Modellierung stabartiger Bauteile bei Flächentragwerken, Sofistik Seminar 2005, Nürnberg, Sofistik GmbH Oberschleißheim

    Google Scholar 

  161. Stein E, Niekamp R (1998) Ein objekt-orientiertes Programm für adaptive parallele Berechnungen von zwei- und dreidimensionalen Problemen der Strukturmechanik, Finite Elemente in der Baupraxis, Technische Universität Darmstadt, 1998. Ernst & Sohn, Berlin

    Google Scholar 

  162. Berger H, Gabbert U, Graeff-Weinberg K, Grochla J, Köppe H (1996) Über eine Technik zur lokalen Netzverdichtung in der FEM und ihre Anwendung im Bauwesen, TH Darmstadt, VDI-Verlag, Düsseldorf, 4. FEM/CAD-Tagung

    Google Scholar 

  163. Cramer H (1999) Anwendungsorientierte Finite-Element-Modelle für die Kopplung verschiedenartiger Tragwerksteile, 7. Fachtagung Baustatik-Baupraxis RWTH Aachen, AA Balkema, Rotterdam (1999)

    Google Scholar 

  164. Glahn H (1973) Ein Kraftgrößenverfahren zur Behandlung von Pilz- und Flachdecken über rechteckigem Grundriß, Dissertation, TH Aachen

    Google Scholar 

  165. Glahn H, Trost H (1974) Zur Berechnung von Pilzdecken. Der Bauingenieur, Springer, Berlin

    Google Scholar 

  166. Holzer S (1998) Was kann ein Finite-Element-Programm für Platten in der Praxis leisten?, Finite Elemente in der Baupraxis (Darmstadt 1998). Ernst & Sohn, Berlin

    Google Scholar 

  167. Ramm E, Müller J (1985) Flachdecken und Finite Elemente - Einfluß des Rechenmodells im Stützenbereich, Finite Elemente - Anwendungen in der Baupraxis, München 1984. Ernst & Sohn, Berlin

    Google Scholar 

  168. Konrad A, Wunderlich W (1995) Erfahrungen bei der baupraktischen Anwendung der FE-Methode bei Platten- und Scheibentragwerken, Finite Elemente in der Baupraxis (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  169. Scharpf D (1985) Anwendungsorientierte Grundlagen Finiter Elemente, Landesvereinigung der Prüfingenieure für Baustatik, Baden-Württemberg, Tagungsbericht 10, Freudenstadt

    Google Scholar 

  170. Sutter J (2000) Finite-Element-Berechnung von Flachdecken mit Pilzkopfverstärkung, Diplomarbeit, Fachhochschule Konstanz, Fachbereich Bauingenieurwesen, Lehrgebiet Baustatik (Prof Dr-Ing H Werkle)

    Google Scholar 

  171. Zimmermann S (1989) Parameterstudie an Platte mit Unterzug, 1. FEM-Tagung Kaiserslautern

    Google Scholar 

  172. Katz C, Stieda J (1992) Praktische FE-Berechnung mit Plattenbalken, Bauinformatik 1/1992

    Google Scholar 

  173. Wunderlich W, Kiener G, Ostermann W (1994) Modellierung und Berechnung von Deckenplatten mit Unterzügen, Bauingenieur 89. Springer, Berlin

    Google Scholar 

  174. Katz C (1994) Neues zu Plattenbalken, Sofistik-Seminar, Nürnberg 1994, Sofistik GmbH

    Google Scholar 

  175. Rothe H (1994) Anwendungen von FE-Programmen und ihre Grenzen, Seminar Tragwerksplanung der Vereinigung der Prüfingenieure für Baustatik in Hessen

    Google Scholar 

  176. Bachmaier T (1994) Verfahren zur Bemessung von Unter- und Überzügen in FEM-Platten, 3. FEM/CAD-Tagung, TH Darmstadt

    Google Scholar 

  177. Bechert H, Bechert A (1995) Kopplung von Platten-, Scheiben- und Balkenelementen - das Problem der voll mittragenden Breite, Finite Elemente in der Baupraxis (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  178. DIN EN (2011) 1992-1-1, Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Januar 2011

    Google Scholar 

  179. Gupta Ma (1977) Error in eccentric beam formulation. Int J Numer Methods Eng 11:1473–1477

    Article  MATH  Google Scholar 

  180. Wassermann K (1995) Unter- und Überzug in MicroFe und PlaTo, mb-news, Oktober 1995, mb-Programme, Hameln

    Google Scholar 

  181. Schöck Isokorb® (2020) Technical Information, Schöck Isokorb® T for reinforced concrete structures, Bicester, UK

    Google Scholar 

  182. Stiglat K, Wippel H (1976) Die vierseitig frei drehbar gelagerte Platte mit abhebenden Ecken unter Gleichlast, Beton- und Stahlbetonbau 8, vol 71. Ernst & Sohn, Berlin, 207

    Google Scholar 

  183. Marques JMMC, Owen DRJ (1984) Infinite elements in quasi-static materially nonlinear problems. Comput Struct 18(4):739–751

    Article  Google Scholar 

  184. Zienkiewicz OC, Emson C, Bettess P (1983) A novel boundary infinite element. Int J Numer Methods Eng 19:393–404

    Article  MathSciNet  MATH  Google Scholar 

  185. v Wolffersdorff P-A, Kimmich S (1999) Erstellung von Bauwerk/Bodenmodellen für komplexe Flächengründungen. In: Meskouris K: Baustatik-Baupraxis 7. Balkema, Rotterdam

    Google Scholar 

  186. NN (1990) Hafenbautechnische Gesellschaft und deutsche Gesellschaft für Erd- und Grundbau/Arbeitsausschuss Ufereinfassungen: Empfehlungen des Arbeitsausschusses Ufereinfassungen EAU 1990, Ernst & Sohn, Berlin

    Google Scholar 

  187. Arslan U (2009) Bodenmechanik und Felsmechanik. Institut für Werkstoffe und Mechanik im Bauwesen, Technische Universität Darmstadt, Darmstadt

    Google Scholar 

  188. Waas G, Riggs R, Werkle H (1985) Displacement solutions for dynamic loads in transversly-isotropic stratified media. Earthquake Engineering and Design, vol 13. Wiley, 173–193

    Google Scholar 

  189. Smoltczyk U (1980) Grundbau Taschenbuch. Ernst & Sohn, Berlin

    Google Scholar 

  190. HASE NN (2019) Halbraumanalyse für statische Boden-Struktur-Interaktion, Manual Version 2018 Aug, Sofistik AG, Oberschleißheim, Germany

    Google Scholar 

  191. Bellmann J, Katz C (1994) Bauwerk-Boden-Wechselwirkungen, 3. FEM/CAD-Tagung Darmstadt, TH Darmstadt

    Google Scholar 

  192. Tsudik E (2013) Analysis of structures on elastic foundations. J Ross Publishing, Cengage Learning, Delhi

    Google Scholar 

  193. Kany M (1974) Berechnung von Flächengründungen, 2nd edn. Ernst & Sohn, Berlin

    Google Scholar 

  194. Hahn J (1970) Durchlaufträger, Rahmen, Platten und Balken auf elastischer Bettung, Werner-Verlag, Düsseldorf

    Google Scholar 

  195. Bares R (1979) Berechnungstafeln für Platten und Wandscheiben — tables for the analysis of plates, slabs and diaphragms. Bauverlag, Wiesbaden

    Google Scholar 

  196. Hirschfeld K (1969) Baustatik. Springer, Berlin

    Book  MATH  Google Scholar 

  197. Buczkowski R, Torbacki W (2001) Finite element modelling of thick plates on two-parameter elastic foundation. Int J Numer Anal Meth Geomech 25:1409–1427

    Article  MATH  Google Scholar 

  198. Buczkowski R, Taczaka M, Kleiber M (2015) A 16-node locking-free Mindlin plate resting on a two-parameter elastic foundation — static and eigenvalue analysis. Comput Assist Methods Eng Sci 22:99–114

    MathSciNet  Google Scholar 

  199. Waas G (1980) Dynamisch belastete Fundamente auf geschichtetem Baugrund. VDI-Berichte Nr 381:185–189

    Google Scholar 

  200. Petersen C, Werkle H (2018) Dynamik der Baukonstruktionen, 2nd edn. Springer Vieweg, Wiesbaden

    Google Scholar 

  201. DIN-Fachbericht 130 (2003) Wechselwirkung Baugrund/Bauwerk bei Flachgründungen. Beuth-Verlag, Berlin

    Google Scholar 

  202. Fischer D (2009) Interaktion zwischen Baugrund und Bauwerk, Schriftenreihe Geotechnik. H 21, Universität Kassel

    Google Scholar 

  203. Morgen K, Bente S (2012) Flachgründungen. In: Boley C, Handbuch der Geotechnik. Vieweg + Teubner, Wiesbaden

    Google Scholar 

  204. Ahrens H, Winselmann D (1984) Eine iterative Berechnung von Flachgründungen nach dem Steifemodulverfahren, Finite-Elemente – Anwendungen in der Baupraxis – FEM’84. Ernst & Sohn, Berlin

    Google Scholar 

  205. Caselunge A, Eriksson J (2012) Structural element approaches for soil-structure interaction. Masterthesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Schweden

    Google Scholar 

  206. Barth Ch, Margraf E (2004) Untersuchung verschiedener Bodenmodelle zur Berechnung von Fundamentplatten im Rahmen von FEM-Lösungen, Bautechnik 81, H5, Ernst & Sohn, Berlin, 337–343

    Google Scholar 

  207. Pasternak PL (1954) New method of calculation for flexible substructures on two-parameter elastic foundation. Gosudarstvennoe Izdatelstoo. Literatury po Stroitelstvu i Architekture, Moskau, 1–56 (in Russian)

    Google Scholar 

  208. Barwaschow WA (1977) Setzungsberechnungen von unterschiedlichen Modellen, Osnowania, fundamenti i mechanika gruntow, H. 4/77, Moskau (in Russian)

    Google Scholar 

  209. Vlasov VZ, Leont’ev NN (1966) Beams, plates and shells on elastic foundations, Israel Program for Scientific Translations, Jerusalem (Translated from Russian; original Russian version published in 1960)

    Google Scholar 

  210. Jones R, Xenophontos J (1977) The Vlasov foundation model. Int J Mech Sci 19(1977):317–323

    Article  MATH  Google Scholar 

  211. Vallabhan CVG, Daloglu AT (1999) Consistent FEM-Vlasov model for plates on layered soil. J Struct Eng ASCE 108–113

    Google Scholar 

  212. Kolar V, Nemec I (1986) Modelling of soil–structure interaction. Elsevier Publishers, Amsterdam

    Google Scholar 

  213. Tanahashi H (2007) Pasternak model formulation of elastic displacements in the case of a rigid circular foundation. J Asian Arch Buil Eng 6(1):167–173

    Article  Google Scholar 

  214. Tanahashi H (2004) Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model, soils and foundations, vol 44, No 5. Japanese Geotechnical Society, Tokyo

    Google Scholar 

  215. Feng Z, Cook RD (1983) Beam elements on two-parameter elastic foundations. J Eng Mech 6 109:1390–1402

    Google Scholar 

  216. Iancu-Bogdan T, Vasile M (2010) The modified Vlasov foundation model: an attractive approach for beams resting on elastic supports. EJGE, vol 15

    Google Scholar 

  217. Buczkowski R, Torbacki W (2009) Finite element analysis of plate on layered tensionless foundation. Archives in Civil Engineering, LVI 3

    Google Scholar 

  218. Straughan WT (1990) Analysis of plates on elastic foundations, Texas Tech University, Dissertation

    Google Scholar 

  219. Werkle H, Slongo L (2018) Modellierung des Baugrunds bei der Finite-Element-Berechnung von Bodenplatten, Bautechnik 95, H 8. Ernst & Sohn, Berlin

    Google Scholar 

  220. Slongo L (2017) Modellierung der Boden–Bauwerk–Wechselwirkung bei der statischen Berechnung von Fundamentplatten, Bachelorthesis, HTWG Konstanz, Fakultät Bauingenieurwesen, Lehrgebiet Baustatik (Prof Dr-Ing H Werkle), Konstanz

    Google Scholar 

  221. Rothe D (2019) Vergleich-2-Parameter-Modelle, personal communication, Hochschule Darmstadt, 28 Aug 2019

    Google Scholar 

  222. Zilch K, Katzenbach R (2002) Baugrund–Tragwerk–Interaktion. In: Handbuch für Bauingenieure, Springer, Berlin, 3-462–3-480

    Google Scholar 

  223. DIN 4018 (1974) Berechnung der Sohldruckverteilung unter Flächengründungen, einschl. Beiblatt 1 (Erläuterungen und Berechnungsbeispiele) Beuth-Verlag, Berlin, 1974 (DIN 4018) und 1981 (Beiblatt)

    Google Scholar 

  224. Meyerhof G (1953) Some recent foundation research and application to design. Struct Eng 31(6):151–167

    Google Scholar 

  225. Werkle H, Bock P (1996) Zur Anwendung der Finite-Elemente-Methode in der Praxis – Fehlerquellen bei der Modellbildung und Ergebnisinterpretation, 4. FEM/CAD-Tagung, TH Darmstadt, Darmstadt

    Google Scholar 

  226. Laggner TM, Schlicke D, Tue NV, Denk W-D (2021) Statische Analyse mit linear elastischen 3D-Gebäudemodellen, Auswirkungen unterschiedlicher Modellierungsarten auf den vertikalen Lastfluss, Beton- und Stahlbetonbau 116, Ernst & Sohn, Berlin

    Google Scholar 

  227. Ramm E, Fleischmann N, Burmeister A (1993) Modellierung mit Faltwerkselementen. Tagung Universtät München, Baustatik-Baupraxis

    Google Scholar 

  228. Tompert K (1997) Anwendungen der FE-Methode bei der Berechnung ebener und räumlicher Tragwerke im Hochbau, Probleme beim Aufstellen und Prüfen, Landesvereinigung der Prüfingenieure für Baustatik Baden-Württemberg, Tagungsbericht 24, Freudenstadt

    Google Scholar 

  229. Tompert K (1998) Probleme beim Aufstellen und Prüfen von FE-Berechnungen, 2. Technische Universität Dresden, Oktober, Dresdener Baustatik-Seminar

    Google Scholar 

  230. Dressel B (1998) Zuverlässigkeit von Standsicherheitsnachweisen aus der Sicht des Prüfingenieurs, 2. Technische Universität Dresden, Oktober, Dresdener Baustatik-Seminar

    Google Scholar 

  231. Krebs A, Pellar A, Runte Th (1995) Einsatz der Methode der Finiten Elemente am Beispiel eines schiefwinkligen Rahmenbauwerks, Finite Elemente in der Baupraxis, (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  232. Pflüger A (1960) Elementare Schalenstatik. Springer, Berlin

    Book  MATH  Google Scholar 

  233. Flügge W (1981) Statik und Dynamik der Schalen. Springer, Berlin

    MATH  Google Scholar 

  234. Schaper G, Helter E (1998) Erfahrungen mit verschiedenen FEM-Programmen bei der Berechnung eines teilweise vorgespannten Faulbehälters, Finite Elemente in der Baupraxis (Darmstadt 1998). Ernst & Sohn, Berlin

    Google Scholar 

  235. Pitkäranta J, Babuska I, Szabo B (2008) The Girkmann problem. IACM Expr 22:28

    Google Scholar 

  236. Pitkäranta J, Babuska I, Szabo B (2009) The problem of verification with reference to the Girkmann problem. IACM Expr 24:14–15

    Google Scholar 

  237. Szabo BA, Babuska I, Pitkäranta J (2010) The problem of verification with reference to the Girkmann problem. Engineering with computers, vol 26. Springer, 171–183

    Google Scholar 

  238. Fastabend M, Schäfers T, Albert M, Lommen HG (2009) Zur sinnvollen Anwendung ganzheitlicher Gebäudemodelle in der Tragwerksplanung von Hochbauten, Beton- und Stahlbetonbau 104, H 10. Ernst & Sohn, Berlin

    Google Scholar 

  239. Enseleit J (1999) Strukturmechanische Analyse des Entstehens von Bauwerken. Werner-Verlag, Düsseldorf

    Google Scholar 

  240. Bischoff M (2010) Statik am Gesamtmodell: Modellierung, Berechnung und Kontrolle, Der Prüfingenieur 36. Zeitschrift der Bundesvereinigung der Prüfingenieure für Bautechnik, Berlin

    Google Scholar 

  241. Staller M (2014) Bautechnische Prüfung von Gesamtmodellen im Massivbau, Baustatik-Baupraxis 12, TU München

    Google Scholar 

  242. Fischer O, Reinhardt J (2008) Tragwerksplanung mit Gesamtmodellen aus der Sicht einer Baufirma, Baustatik-Baupraxis 10, Universität Karlsruhe (TU)

    Google Scholar 

  243. Löwenstein JG (2014) Rechnen am Gesamtsystem, mb-news, 4/2014, mb AEC Software GmbH, Kaiserslautern

    Google Scholar 

  244. Bischoff M (2015) Computer und Tragwerksmodellierung – Vorschläge und Impulse für eine moderne universitäre Baustatiklehre. Der Prüfingenieur, Zeitschrift der Bundesvereinigung der Prüfingenieure für Bautechnik, Mai 2015, Berlin

    Google Scholar 

  245. Häßler M (2014) Finite-Element-Berechnungen von Bauwerken mit Gesamtmodellen, Bachelorthesis, HTWG Konstanz, Fakultät Bauingenieurwesen, Lehrgebiet Baustatik (Prof Dr-Ing Horst Werkle), Konstanz

    Google Scholar 

  246. Fastabend M (2014) Statische Berechnung mit Gesamtmodellen – bautechnische Prüfung und Qualitätssicherung, Baustatik-Baupraxis 12, TU München

    Google Scholar 

  247. Rank E, Roßmann A (1987) Fehlerschätzung und automatische Netzanpassung bei Finite-Element-Berechnungen, Bauingenieur 62. Springer, Berlin, 449–454

    Google Scholar 

  248. Stein E, Ohnimus S, Seifert B, Mahnken R (1993) Adaptive Finite-Element-Methoden im konstruktiven Ingenieurbau. Tagung Universtät München, Baustatik-Baupraxis

    Google Scholar 

  249. Zienkiewicz OC, Zhu Z (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357

    Article  MathSciNet  MATH  Google Scholar 

  250. Grätsch T, Bathe K-J (2005) Entwicklung von Finite-Element-Modellen – Stand und Tendenzen, Baustatik-Baupraxis 9, TU Dresden

    Google Scholar 

  251. Grätsch T, Bathe K-J (2005) A posteriori estimation techniques in practical finite element analysis. Computers & structures, vol 83. Elsevier, 235–265

    Google Scholar 

  252. Zienkiewicz OC, Zhu Z (1989) Error estimates and adaptive refinement for plate bending problems. Int J Numer Methods Eng 28:2853–2893

    MathSciNet  MATH  Google Scholar 

  253. Katz C (1989) Fehlerabschätzungen Finiter Element Berechnungen, 1. FEM-Tagung Kaiserslautern, Tagungsband

    Google Scholar 

  254. Hartmann F, Pickardt S (1985) Der Fehler bei finiten Elementen, Bauingenieur 60. Springer, Berlin, 463–468

    Google Scholar 

  255. Grätsch T, Hartmann F (2001) Über ein Fehlerbild bei der Schnittgrößenermittlung mit finiten Elementen – Teil 1: Scheiben, Bautechnik 78, H 5. Ernst & Sohn, Berlin

    Book  Google Scholar 

  256. Grätsch T, Hartmann F (2005) Über ein Fehlerbild bei der Schnittgrößenermittlung mit finiten Elementen – Teil 2: Platten, Bautechnik 80, H 3. Ernst & Sohn, Berlin

    Google Scholar 

  257. Holzer S, Rank E, Werner H (1990) An implementation of the hp-version of the finite element method for Reissner-Mindlin plate problems. Int J Numer Methods Eng 30:459–471

    Article  MATH  Google Scholar 

  258. Stein E, Ohnimus S (1995) Zuverlässigkeit und Effizienz von Finite-Element-Berechnungen durch adaptive Methoden, Finite Elemente in der Baupraxis (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  259. Pravida JM (1999) Zur nichtlinearen adaptiven Finite-Element-Analyse von Stahlbetonscheiben, Dissertation, TU München

    Google Scholar 

  260. Duda H (1998) FEM – ein verführerisches Hilfsmittel, Finite Elemente in der Baupraxis (Darmstadt 1998). Ernst & Sohn, Berlin

    Google Scholar 

  261. Göttlicher M (2000) Anwendung der FEM in der Baupraxis, Festschrift Bauinformatik zu Ehren von Univ.-Prof Dr-Ing habil. Udo F. Meißner zum 60. Geburtstag, Hrsg: U Rüppel, K Wassermann, Werner-Verlag, Düsseldorf

    Google Scholar 

  262. Wörner J-D (2000) Informatik und Ingenieurwesen, Festschrift Bauinformatik zu Ehren von Univ-Prof Dr-Ing. habil. Udo F. Meißner zum 60. Geburtstag, Hrsg: U Rüppel, K Wassermann, Werner-Verlag, Düsseldorf

    Google Scholar 

  263. Reineck K-H (1995) Der Schadensfall Sleipner und die Folgerungen für den computerunterstützten Entwurf von Tragwerken aus Konstruktionsbeton, Finite Elemente in der Baupraxis (Stuttgart 1995). Ernst & Sohn, Berlin

    Google Scholar 

  264. N N (2002) Anforderungen für das Aufstellen EDV-unterstützter Standsicherheitsnachweise, Fachkommission der Vereinigung der Prüfingenieure für Baustatik in Niedersachsen, Bremen und Hamburg

    Google Scholar 

  265. VDI 6201 Blatt 2 (2017) Softwaregestützte Tragwerksberechnung - Verifikationsbeispiele, Verein Deutscher Ingenieure eV, Düsseldorf

    Google Scholar 

  266. Eisfeld M, Struss P (2008) Qualitätssicherung im Konstruktiven Ingenieurbau, Jahrbuch Bautechnik 2009, VDI-Verlag

    Google Scholar 

  267. Polónyi S, Reyer E (1977) Zuverlässigkeitsbetrachtungen und Kontrollmöglichkeiten (Prüfung) zur praktischen Berechnung mit der Finite-Element-Methode, Bautechnik 11. Ernst & Sohn, Berlin

    Google Scholar 

  268. Meißner U, Heller M (1989) Zur Beurteilung von Finite-Element-Ergebnissen, 1. Universität Kaiserslautern, FEM-Tagung

    Google Scholar 

  269. Sofistik (2018) Mechanical Benchmarks, verification manual, SOFiSTiK AG, Oberschleissheim

    Google Scholar 

  270. Henke P, Rapolder M (2008) Tragwerksplanung mit Gesamtmodellen – Auswirkungen auf die bautechnische Prüfung, Baustatik-Baupraxis 10, Universität Karlsruhe (TU)

    Google Scholar 

  271. Henke P, Rapolder M (2011) Erfahrungen und Forderungen aus der bautechnischen Prüfung, Baustatik-Baupraxis 11, Innsbruck

    Google Scholar 

  272. Rombach G (2007) Probleme bei der Berechnung von Stahlbetonkonstruktionen mittels dreidimensionaler Gesamtmodelle. Beton- und Stahlbetonbau 102:207–214

    Article  Google Scholar 

  273. Rombach G (2010) Statik am Gesamtmodell: Modellierung. Berechnung, Kontrolle, Der Prüfingenieur 36:27–34

    Google Scholar 

  274. Minnert J (2013) Black-Box EDV-gestützte Berechnungen?! Notwendigkeit und Möglichkeiten der Ergebniskontrolle, 10. Gießener Bauforum 2013, Shaker-Verlag, Aachen

    Google Scholar 

  275. Eisenbiegler G (1988) Gleichgewichtskontrollen bei punktgestützten Platten, Beton- und Stahlbetonbau 83. Ernst & Sohn, Berlin

    Google Scholar 

  276. Mestrovic M (2016) An application of Richardson extrapolation on FEM solutions. Int J Math Comput Methods

    Google Scholar 

  277. Losch S, Butenweg C (1999) Qualitätsgesteuerte Bemessung von Stahlbetontragwerken mit der FE-Methode, 11. Forum Bauinformatik, Junge Wissenschaftler forschen, Darmstadt, 208–215

    Google Scholar 

  278. Ri-EDV-AP-2001 (2001) Richtlinie für das Aufstellen und Prüfen EDV-unterstützter Standsicherheitsnachweise, Ausgabe April 2001, Bundesvereinigung der Prüfingenieure für Bautechnik eV, 2001, Hamburg

    Google Scholar 

  279. Bathe K-J (2007) To enrich life. Klaus-Jürgen Bathe, USA

    Google Scholar 

  280. Madenci E, Guven I (2015) The finite element method and applications in engineering using ANSYS. Springer International Publishing, New York

    Book  Google Scholar 

  281. Wilson EL (1970) SAP — a general structural analysis program, report no UC SESM 70–20. Structural Engineering Laboratory, University of California, Berkeley, USA

    Google Scholar 

  282. Bathe K-J, Wilson EL, Peterson FE (1974) SAP IV — a structural analysis program for static and dynamic response of linear systems, report no. EERC 73-11, Earthquake Engineering Research Center, University of California, Berkeley, USA

    Google Scholar 

  283. Werner H, Axhausen K, Katz C (1979) Programmaufbau und Datenstrukturen in entwurfsunterstützenden Programmketten. In: Pahl PJ, Stein E, Wunderlich W (eds) Finite Elemente in der Baupraxis. Springer, Berlin

    Google Scholar 

  284. Kimmich S (2020) Numerische Mathematik und Anwendung in der Finite Element Methode. Skriptum, HS Stuttgart

    Google Scholar 

  285. Batoz J-L (1982) An explicit formulation for an efficient triangular plate-bending element. Int J Numer Methods Eng 18:1077–1089

    Google Scholar 

  286. Batoz J-L, Tahar MB (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Methods Eng 18:1655–1677

    Google Scholar 

  287. Bucalem ML, Bathe K-J (2011) The mechanics of solids and structures—hierarchical modeling and the finite element solution. Springer, Berlin

    Book  MATH  Google Scholar 

Internet References

  1. WEB 1 (2019) http://www.adina.com/company.shtml. visited at 18.2.2019, 14:33

  2. WEB 2 (2019) https://en.wikipedia.org/wiki/Ansys. visited at 18.2.2019, 15:03

  3. WEB 3 (2019) https://www.csiamerica.com/products/sap2000. visited at 18.2.2019, 16:00

  4. WEB 4 (2019) https://www.infograph.de/de/geschichte. visited at 18.2.2019, 16:10

  5. WEB 5 (2019) https://www.dlubal.com/de/unternehmen/ueber-uns/historie-und-zahlen https://www.dlubal.com/de/unternehmen/ueber-uns/firmenphilosophie. visited at 18.2.2019, 16:30

  6. WEB 6 (2019) https://www.sofistik.de/unternehmen/ueber-uns/geschichte/. visited at 18.2.2019, 16:40

  7. WEB 7 (2019) https://www.rib-software.com/group/ueber-rib/historie/. Visited at 18.2.2019, 16:50

Finite Element Software

  1. SOF 1 (2012) ADINA, Theory and Modeling Guide, Volume I: ADINA, Report ARD 12-8, ADINA R&D Inc, Watertown USA, Dec 2012

    Google Scholar 

  2. SOF 2 (2013) ANSYS, ANSYS mechanical APDL element reference, release 15.0, ANSYS Inc, Canonsburg, USA, Nov 2013

    Google Scholar 

  3. SOF 3 (2018) InfoCad, InfoCad 18.1 – User manual, InfoGraph GmbH, Aachen, Germany

    Google Scholar 

  4. SOF 3a (1997) InfoCad – FEM Programmsystem, InfoGraph GmbH, Aachen, Germany

    Google Scholar 

  5. SOF 4 (2016) Dlubal RFEM, RFEM 5 Programmbeschreibung. Dlubal Software GmbH, Tiefenbach, Deutschland

    Google Scholar 

  6. SOF 5 (2016) SAP2000, CSI Analysis Reference Manual For SAP2000®, ETABS®, and SAFE®, Computers and Structures (CSI) Berkeley, Calfornia, USA

    Google Scholar 

  7. SOF 6 (2014) SOFiSTiK Finite-Element-Software, Version 2014-9 ASE – Allgemeine Statik Finiter Element Strukturen, ASE Manual, Version 2014-9, Software Version, Sofistik 2014, SOFiSTiK AG, Oberschleissheim, Germany, 2015 TAPLA – 2D Finite Elemente in der Geotechnik, TALPA Manual, Version 2014-9, Software Version SOFiSTiK 2014, SOFiSTiK AG, Oberschleissheim, Germany

    Google Scholar 

  8. SOF 6a SOFiSTiK Finite-Element-Software, Version 2.0-93, SOFiSTiK GmbH, Oberschleißheim

    Google Scholar 

  9. SOF 7 (2019) iTWO structure fem/TRIMAS TRIMAS/ PONTI, Grundlagen Benutzerhandbuch, RIB Software AG, Stuttgart-Möhringen

    Google Scholar 

  10. SOF 8 MicroFe, Version 2019, mb AEC Software GmbH, Kaiserslautern

    Google Scholar 

  11. SOF 8a (1992) MicroFe, Version 5.21, mb-Programme, Software im Bauwesen GmbH, Hameln, Kopmanshof 69 (aktuelle Programmversion enthält eine anderes Plattenelement)

    Google Scholar 

  12. SOF 9 (2019) s3d/microSnap, Detlef Rothe Hochschule Darmstadt & Thomas Schmidt Hochschule Magedeburg-Stendal, Version 0.68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Werkle .

Exercises

Exercises

Problems

4.1

A stiffness matrix based on a displacement shape function has been determined for a truss element with 4 nodal points. The element has a linearly variable cross section. With which accuracy are the displacements, the normal stresses and the strains in the element represented, if a polynomial distribution is assumed?

figure be

4.2

The cross-sectional area A(x) of a truss element has an arbitrary distribution with x. Derive the stiffness matrix of a truss member with 2 nodes using the principle of virtual displacements

figure bf

4.3

A truss member has a cross-sectional area with a quadratic distribution, which is described as \( A(x) = A_{1} + \dfrac{x}{l}\left( { - 3A_{1} + 4A_{m} - A_{2} } \right) + \dfrac{{x^{2} }}{{l^{2} }}\left( {2A_{1} - 4A_{m} + 2A_{2} } \right) \) where \( A_{1} ,\;A_{2} ,\;A_{m} \) are the cross-sectional areas at points 1, 2 and at midpoint m of the element (\( x = l/2 \)) , respectively. Determine the stiffness matrix of the element analytically by means of the result of problem 4.2. Check your result using the stiffness matrix determined in Example 4.2 for a member with the following parameters:

$$ l = 500\;{\text{cm,}}\; E = 1000\;{{\text{kN}} / {\text{cm}}}^{ 2} ,\; A_{1} = 500\;{\text{cm}}^{ 2} ,\; A_{m} = 300\;{\text{cm}}^{ 2} ,\; A_{2} = 100\;{\text{cm}}^{ 2} $$

4.4

A truss member with quadratically variable cross-sectional area (cf. Problems 4.2, 4.3) has the parameters

\( l = 500\;{\text{cm,}}\quad E = 1000\;{{\text{kN}} / {\text{cm}}}^{ 2} , \)

\( A_{1} = 900\;{\text{cm}}^{ 2} ,\quad A_{m} = 400\;{\text{cm}}^{ 2} ,\quad A_{2} = 100\;{\text{cm}}^{ 2} \)

Determine the stiffness matrix of the truss element

  1. (a)

    analytically with the stiffness matrix according to Problem 4.3

  2. (b)

    numerically with a Gaussian-2-point integration

4.5

A bar subjected to tension is modeled with isoparametric plane stress elements. Draw in row 0 of the table the exact distribution of the normal stresses for the loadings A, B, and C and give their mathematical equation. The rows 1 to 4 show different finite element models. Indicate with “exact” or “approximate” if the FE models give the exact solution or not when loaded according to columns A, B, and C

  

A

B

C

  

0

Exact solution of stress distribution

   

1

   

2

   

3

   

4

   

4.6

The stiffness matrix of a FE model for plane stress is considered. Which are the degrees of freedom of the given FE model in plane stress? Show the structure of the stiffness matrix, label the degrees of freedom and indicate for each term of the stiffness matrix if it is equal to zero (“0”) or unequal to zero (“x”)

figure bn

4.7

What is the order n × n of the stiffness matrix of the two solid elements shown?

figure bo

4.8

Solve the integral with numerical Gaussian 3-point integration:

$${ \int_{0.5}^{1} {\dfrac{\sqrt[\scriptstyle 3] {\sin (3{\cdot}{x})}} {{x}^2 +30} \, {\rm d}x }}$$

4.9

A force \( F_{x} \) is applied on a conforming, rectangular 4-nodal plane stress element. Determine the equivalent nodal forces

figure bq

4.10

A finite element program has calculated the nodal displacements of a plane stress element given below. The element used is a conformal rectangular element with a bilinear shape function. How large are the displacements, stresses, and strains at point p?

Nodal displacements:

figure br

\( E = 3 {\cdot} 10^{7} \;{\text{kN/m}}^{ 2}, \quad \mu = 0.2 \)

Node

u [mm]

v [mm]

1

0.1690

−0.2811

2

0.1596

−0.2808

3

0.1530

−0.2871

4

0.1693

−0.2875

4.11

Verify that the bar element subjected to torsion fulfills the rigid body motion condition required for finite elements

figure bs

4.12

Verify that the truss member inclined at the angle α fulfills the rigid body displacement conditions required for finite elements

figure bt

4.13

The finite element system shown consists of a plane stress element and a spring. Determine all displacements, the stresses in the middle of the element, and the force in the spring.

figure bu

Parameters:

Plane stress element: \( t = 0.20\,{\text{m}}, \quad E = 30000\,{\text{MN}}/{\text{m}}^{2} \)

Spring: \( k = 1000\,{\text{MN}}/{\text{m}} \)

Load: \( F = 0.500\,{\text{MN}} \)

4.14

A plate is modeled with two plane stress elements. Determine the nodal displacements and the stresses (all components) of point 3 by the FEM. Assess the vertical displacement and the vertical stress in point 3 by a simple hand calculation. How do you assess the accuracy of the FEM calculation? Give the displacements in the midpoint of element 1. The thickness of the plate is t = 0.10 m.

figure bv

4.15

A system consisting of four plane stress elements is investigated. Determine the nodal displacements of point 5 and the stresses (all components) in the midpoint of element 1.

figure bw

\( E = \;3 {\cdot} 10^{7} \;{\text{kN/m}}^{2}, \quad \mu = 0.2, \quad t = 0.30\;{\text{m}}, \quad F = 10000\;{\text{kN}} \)

4.16

A square 4-node element for plates in bending with bilinear displacement shape functions is loaded with a distributed load

\( p(x,y) = N_{1} (x,y) \cdot p_{1} \) with \( N_{1} = \dfrac{1}{4} - \dfrac{1}{2a}x - \dfrac{1}{2b}y + \dfrac{1}{ab}xy \)

Determine the equivalent nodal forces using a numerical 2-point Gaussian integration.

figure bx

\( a = 1.00\;{\text{m}},\quad b = 1.00\;{\text{m}}, {\quad} p_{1} = 1.0\;{\text{kN/m}}^{ 2}, \quad p_{2} = p_{3} = p_{4} = 0\)

4.17

A plate clamped on three sides with a free edge and a line load is discretized into two nonconforming, shear rigid plate elements. At the clamped edges, the translational, as well as all rotational degrees of freedom, are fixed. Determine the deflection and rotational angles in the middle of the free edge.

figure by

\( E = 3.10^{7}\, \text{kN}/\text{m}^{2}, \quad \mu = 0.2, \quad t = 0.3\, {\rm m}, \quad p_z = 10 \, \text{kN}/\text{m} \)

Solutions

4.1

Displacements are exactly represented up to 3rd order polynomials, stresses, and strains up to 2nd order polynomials.

4.2

$$ \begin{aligned} & u(x) = u_{1} + \frac{x}{l} \cdot \left( {u_{2} - u_{1} } \right) = \left[ {\begin{array}{*{20}c} {1 - \dfrac{x}{l}} & {\dfrac{x}{l}} \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}c} {u_{1} } \\ {u_{2} } \\ \end{array} } \right]\qquad \varepsilon = \frac{{{\text{d}}u}}{{{\text{d}}x}} = \underline{B} \cdot \underline{u} \\ & \underline{B} = \left[ {\begin{array}{*{20}c} { - \dfrac{1}{l}} & {\dfrac{1}{l}} \\ \end{array} } \right]\qquad \underline{u} = \left[ {\begin{array}{*{20}c} {u_{1} } \\ {u_{2} } \\ \end{array} } \right]\qquad \underline{D} = \left[ E \right] \\ & \underline{K} = \int {\underline{B}^{\text{T}} } \cdot \underline{D} \cdot \underline{B} {\text {d}}V = \int\limits_{0}^{l} {\underline{B}^{\text{T}} \cdot \underline{D} \cdot \underline{B} } \cdot A(x) \;\; {\text{d}}x = \frac{E}{{l^{2} }} \cdot \left[ {\begin{array}{*{20}r} 1 & { - 1} \\ { - 1} & 1 \\ \end{array} } \right] \cdot \int\limits_{0}^{l} {A(x) \;\; {\text{d}}x} \\ \end{aligned} $$

4.3

General solution: \( \underline{K} = \dfrac{E}{l} \cdot \left[ {\begin{array}{*{20}r} 1 & { - 1} \\ { - 1} & 1 \\ \end{array} } \right] \cdot \left( {\dfrac{1}{6}A_{1} + \dfrac{2}{3}A_{m} + \dfrac{1}{6}A_{2} } \right) \)

Solution with the numerical values given: \(\underline{K} = 600 \cdot \left[ {\begin{array}{*{20}r} 1 & { - 1} \\ { - 1} & 1 \end{array} } \right] \; \dfrac{\textrm{kN}}{\text{cm}} \)

4.4

(a) and (b): \( \underline{K} = 866.7 \cdot \left[ {\begin{array}{*{20}r} 1 & { - 1} \\ { - 1} & 1 \end{array} } \right] \; \dfrac{\textrm{kN}}{\text{cm}} \)

4.5

  

A

B

C

  

0

Exact solution for the bar

constant

linear

quadratic

1

Exact

Approximate

Approximate

2

Exact

Approximate

Approximate

3

Exact

Exact

Approximate

4

Exact

Exact

Exact

4.6

4.7

(a) 12 × 12,

(b) 60 × 60.

4.8

\( \int {} = 0.014 \)

4.9

\( F_{\text{L}x1} = 0.05\;F_{x}, \quad F_{\text{L}x2} = 0.20\;F_{x}, \quad F_{\text{L}x3} = 0.60\;F_{x}, \quad F_{\text{L}x4} = 0.15\;F_{x} \)

4.10

$$ {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \begin{aligned} u_{p} & = 0.158\;{\text{mm}},\quad v_{p} = - 0.286\;{\text{mm}},\\ \varepsilon_{x} & = - 1.215 \cdot 10^{ - 4}, \quad \varepsilon_{y} = - 0.791 \cdot 10^{ - 4}, \quad \gamma_{xy} = - 0.578 \cdot 10^{ - 4} \\ \sigma_{x} & = - 4290\;{\text{kN/m}}^{ 2}, \quad \sigma_{y} = - 3230\;{\text{kN/m}}^{ 2}, \quad \tau_{xy} = - 723\;{\text{kN/m}}^{ 2}\end{aligned} $$

4.11

Nodal moments when both nodes are rotated with \( \varphi_{\text{rigid}} \):

\( \dfrac{{G \cdot I_{\rm T} }}{\ell } \cdot \left[ {\begin{array}{*{20}r} 1 & { - 1} \\ { - 1} & 1 \\ \end{array} } \right] \cdot \left[ \begin{aligned} \varphi_{\text{rigid}} \hfill \\ \varphi_{\text{rigid}} \hfill \\ \end{aligned} \right] = \left[ \begin{aligned} 0 \hfill \\ 0 \hfill \\ \end{aligned} \right] \)

i.e. a rigid body rotation does not generate nodal moments.

4.12

Nodal forces when both nodes are subjected to the nodal displacements \( u_{\text{rigid}} \), \( v_{\text{rigid}} \) (\( s = \sin \alpha ,\;c = \cos \alpha \)):

\( \dfrac{E \cdot A}{l} \cdot \left[ {\begin{array}{*{20}r} \hfill {c^{2} } & \hfill {s \cdot c} & \hfill { - c^{2} } & \hfill { - s \cdot c} \\ \hfill {s \cdot c} & \hfill {s^{2} } & \hfill { - s \cdot c} & \hfill { - s^{2} } \\ \hfill { - c^{2} } & \hfill { - s \cdot c} & \hfill {c^{2} } & \hfill {s \cdot c} \\ \hfill { - s \cdot c} & \hfill { - s^{2} } & \hfill {s \cdot c} & \hfill {s^{2} } \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}c} {u_{\text{rigid}} } \\ {v_{\text{rigid}} } \\ {u_{\text{rigid}} } \\ {v_{\text{rigid}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right] \)

i.e. a rigid body displacement does not generate nodal forces.

4.13

\( u_{1} = 0.044\;{\text{mm}},\;\;\;v_{1} = - 0.186\;{\text{mm,}}\quad F_{\text{spring}} = - 44.5\;{\text{kN}}\quad \left( {\text{compression}} \right), \)

\( \sigma_{x} = 57\;{\text{kN}}/{\text{m}}^{ 2}, \quad \sigma_{y} = - 1381\;{\text{kN}}/{\text{m}}^{ 2}, \quad \tau_{xy} = - 441\;{\text{kN}}/{\text{m}}^{ 2} \)

4.14

Nodal point 3:

\( u_{3} = - 0.636\;{\text{mm}},\quad v_{3} = - 3.959\;{\text{mm}} \)

Element 1:

\( \sigma_{x}^{(1)} = - 992\;{\text{kN}}/{\text{m}}^{ 2}, \quad \sigma_{y}^{(1)} = - 2838\;{\text{kN}}/{\text{m}}^{ 2}, \quad \tau_{xy}^{(1)} = - 1277\;{\text{kN}}/{\text{m}}^{ 2} \)

Element 2:

\( \sigma_{x}^{(2)} = - 992\;{\text{kN}}/{\text{m}}^{ 2}, \quad \sigma_{y}^{(2)} = - 2838\;{\text{kN}}/{\text{m}}^{ 2}, \quad \tau_{xy}^{(2)} = - 1277\;{\text{kN}}/{\text{m}}^{ 2} \)

Nodal point 3:

\( \sigma_{x} = - 658\;{\text{kN}}/{\text{m}}^{ 2}, \quad \sigma_{y} = - 5411\;{{\text{kN}} \mathord{\left/ {\vphantom {{\text{kN}} {{\text{m}}^{ 2} }}} \right. \kern-0pt} {{\text{m}}^{ 2} }},\quad \tau_{xy} = 746\;{\text{kN}}/{\text{m}}^{ 2} \)

Approximate solution:

\(\begin{aligned} v_{3, \text{approx}} = \dfrac{F \cdot l}{E \cdot A} & = \dfrac{500 \cdot 3 \cdot 3}{{0.5 \cdot (2 \cdot 10^{6} + 6 \cdot 10^{6} ) \cdot 0.1 \cdot 3}} \\ & = 3.75 \cdot 10^{ - 3} {\rm m} = 3.75\;{\rm mm} \;\; {\text{(downwards)}}\end{aligned} \)

\( \begin{aligned}\sigma_{y,\text{approx}} & = - \frac{F}{A} = - \frac{500}{0.1} = - 5000\;{\text{kN}}/{\text{m}}^{ 2}, \\ \sigma_{x,\text{approx}} & = \mu \cdot \sigma_{y,\text{approx}} = - 1000\;{\text{kN}}/{\text{m}}^{ 2}\end{aligned} \)

Displacements in the midpoint of element 1:

\( u_{m}^{(1)} = - 0.159\;{\text{mm}}, \quad v_{m}^{(1)} = - 0.990\;{\text{mm}} \)

4.15

\(\begin{aligned} & u_{5} = 0.404\;{\text{mm}},\quad v_{5} = 0.404\;{\text{mm,}} \\ &\sigma_{x,m}^{(1)} = 7576\;{\text{kN}}/{\text{m}}^{ 2}, \quad \sigma_{y,m}^{(1)} = 7576\;{{\text{kN}} \mathord{\left/ {\vphantom {{\text{kN}} {{\text{m}}^{ 2} }}} \right. \kern-0pt} {{\text{m}}^{ 2} }},\quad \tau_{xy,m}^{(1)} = 5051\;{\text{kN}}/{\text{m}}^{ 2} \end{aligned} \)

4.16

\( F_{z,1} = 0.111\;{\text{kN}},\quad F_{z,2} = 0.056\;{\text{kN}},\quad F_{z,3} = 0.028\;{\text{kN}},\quad F_{z,4} = 0.056\;{\text{kN}},{\text{e}}.{\text{g}}. \)

\( \begin{aligned} F_{z,2} & = \,\frac{1}{4} \cdot ( N_{2} ( - 0.289, - 0.289) \cdot N_{1} ( - 0.289, - 0.289) \\ & \qquad \qquad + N_{2} (0.289, - 0.289 \cdot N_{1} (0.289, - 0.289) + \hfill \\ & \qquad \qquad + N_{2} (0.289, - 0.289 \cdot N_{1} (0.289, - 0.289) \\ & \qquad \qquad + N_{2} ( - 0.289, - 0.289 \cdot N_{1} ( - 0.289, - 0.289) \hfill) \\ & = 0.056\;{\text{kN}} \\ \end{aligned} \)

4.17

\( u_{5} = 0.647\;{\text{mm}},\quad \varphi_{x,5} = 0.247 \cdot 10^{ - 3}, \quad \varphi_{y,5} = 0\quad \left( {\text{due to symmetry}} \right) \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Werkle, H. (2021). Plate, Shell, and Solid Structures. In: Finite Elements in Structural Analysis. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-49840-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49840-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49839-9

  • Online ISBN: 978-3-030-49840-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics