Skip to main content

Improving Sustainable Mobility with a Variable Incentive Model for Bike-Sharing Systems Based on Agent-Based Social Simulation

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection (PAAMS 2020)

Abstract

Bike-sharing systems (BSS) have been implemented in numerous cities around the world to reduce the traffic generated by motorized vehicles, due to the benefits they bring to the city, such as reducing congestion or decreasing pollution generation. Caused by their impact on urban mobility, the research community has increased their interest in their study, trying to understand user behavior and improving the user experience. This paper has the goal of analyzing the impact of different policies of incentives on the user experience and their impact on the BSS service. An agent-based simulation model has been developed using data collected from the BSS service of Madrid, so-called BiciMad. Route generation has been calculated based o n OpenStreetMaps. The system has been evaluated, analyzing the results generated on different incentive policies. The main conclusion is that variable incentives outperform the current incentive policy of the service. Finally, a sensitivity analysis is presented to validate the proper variability of results for the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BiciMAD Open Data: http://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1).

  2. 2.

    https://github.com/projectmesa.

  3. 3.

    https://github.com/GIScience.

  4. 4.

    https://github.com/tornadoweb/tornado.

  5. 5.

    https://salib.readthedocs.io/en/latest/.

References

  1. Ban, S., Hyun, K.H.: Designing a user participation-based bike rebalancing service. Sustainability 11(8), 2396 (2019)

    Article  Google Scholar 

  2. Bouton, S., Hannon, E., Knupfer, S., Ramkumar, S.: The future(s) of mobility: how cities can benefit. Technical report, McKinsey & Company (2017)

    Google Scholar 

  3. Chen, B., Cheng, H.H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497 (2010)

    Article  Google Scholar 

  4. Chen, L., Zhang, D.E.A.: Dynamic cluster-based over-demand prediction in bike sharing systems. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 841–852. ACM (2016)

    Google Scholar 

  5. Conebi: European bicycle market 2017 edition. Technical report, Confederation of the European Bicycle Industry (CONEBI) (2017)

    Google Scholar 

  6. Dell’Amico, M., Iori, M., Novellani, S., Subramanian, A.: The bike sharing rebalancing problem with stochastic demands. Transp. Res. Part B 118, 362–380 (2018)

    Article  Google Scholar 

  7. Diez, C., Sanchez-Anguix, V., Palanca, J., Julian, V., Giret, A.: Station status forecasting module for a multi-agent proposal to improve efficiency on bike-sharing usage. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT -2017. LNCS (LNAI), vol. 10767, pp. 476–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01713-2_33

    Chapter  Google Scholar 

  8. Dötterl, J., Bruns, R., Dunkel, J., Ossowski, S.: Towards dynamic rebalancing of bike sharing systems: an event-driven agents approach. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 309–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2_26

    Chapter  Google Scholar 

  9. Feigon, S., Murphy, C.: Shared mobility and the transformation of public transit. Technical report. Project J-11, Task 21, American Public Transportation Association (2016)

    Google Scholar 

  10. Fernández, A., Billhardt, H., Timón, S., Ruiz, C., Sánchez, Ó., Bernabé, I.: Balancing strategies for bike sharing systems. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 208–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_16

    Chapter  Google Scholar 

  11. Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R.: Urban cycles and mobility patterns: exploring and predicting trends in a bicycle-based public transport system. Pervasive Mob. Comput. 6(4), 455–466 (2010)

    Article  Google Scholar 

  12. Leao, S.Z., Pettit, C.: Mapping bicycling patterns with an agent-based model, census and crowdsourced data. In: Namazi-Rad, M.-R., Padgham, L., Perez, P., Nagel, K., Bazzan, A. (eds.) ABMUS 2016. LNCS (LNAI), vol. 10051, pp. 112–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51957-9_7

    Chapter  Google Scholar 

  13. Li, Y., Zheng, Y., Zhang, H., Chen, L.: Traffic prediction in a bike-sharing system. In: Proceedings of the 23rd International Conference on Advances in Geographic Information Systems, p. 33. ACM (2015)

    Google Scholar 

  14. Liu, J., Sun, L., Chen, W., Xiong, H.: Rebalancing bike sharing systems: A multi-source data smart optimization. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1005–1014. ACM (2016)

    Google Scholar 

  15. Lozano, Á., De Paz, J., Villarrubia, G., Iglesia, D., Bajo, J.: Multi-agent system for demand prediction and trip visualization in bike sharing systems. Appl. Sci. 8(1), 67 (2018)

    Article  Google Scholar 

  16. Meddin, R., Demaio, P.: The bike share world map. https://www.bikesharingmap.com (2007). Accessed 10 Nov 2019

  17. Mi, Z., Coffman, D.: The sharing economy promotes sustainable societies. Nat. Commun. 10(1), 1214 (2019)

    Article  Google Scholar 

  18. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  19. Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining for market prediction: a systematic review. Expert Syst. Appl. 41(16), 7653–7670 (2014)

    Article  Google Scholar 

  20. Nations, U.: World urbanization prospects. Technical report, United Nations (2018)

    Google Scholar 

  21. Pinna, F., Masala, F., Garau, C.: Urban policies and mobility trends in Italian smart cities. Sustainability 9(4), 494 (2017)

    Article  Google Scholar 

  22. Raviv, T., Kolka, O.: Optimal inventory management of a bike-sharing station. IIE Trans. 45(10), 1077–1093 (2013)

    Article  Google Scholar 

  23. Serrano, E., Iglesias, C.A.: Validating viral marketing strategies in twitter via agent-based social simulation. Expert Syst. Appl. 50, 140–150 (2016)

    Article  Google Scholar 

  24. Singhvi, D., et al.: Predicting bike usage for New York city’s bike sharing system. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  25. Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incentivizing users for balancing bike sharing systems. In: 29th AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  26. Soriguera, F., Casado, V., Jiménez, E.: A simulation model for public bike-sharing systems. Transp. Res. Procedia 33, 139–146 (2018)

    Article  Google Scholar 

  27. Van Audenhove, F.J.E.A.: The future of urban mobility 2.0: imperatives to shape extended mobility ecosystems of tomorrow. Technical report, Arthur D. Little (2014)

    Google Scholar 

  28. Wallentin, G., Loidl, M.: Agent-based bicycle traffic model for salzburg city. GI\(\_\)Forum J. Geogr. Inf. Sci. 2015, 558–566 (2015)

    Google Scholar 

  29. Zhang, Y., Mi, Z.: Environmental benefits of bike sharing: a big data-based analysis. Appl. Energy 220, 296–301 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by the UPM University-Industry Chair Cabify for Sustainable Mobility. The authors want also to thank EMT for providing BiciMad service data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santiago, A.L., Iglesias, C.A., Carrera, Á. (2020). Improving Sustainable Mobility with a Variable Incentive Model for Bike-Sharing Systems Based on Agent-Based Social Simulation. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics