Skip to main content

Soil Microarthropods and Nutrient Cycling

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

Soil microarthropods are soil macrofauna which help in assisting soil quality, increasing soil carbon and has a major role in soil biogeochemical cycles. Even though the importance of soil microarthropod groups is studied, their role in soil biogeochemical cycles and soil food webs is not well understood compared to other organisms. In this chapter we explain the importance of soil microarthropods as important components of soil biogeochemical cycles. The role of soil microarthropods in soil soil food webs and biogeochemical cycles is also explained. Moreover, the relationship between soil microarthropods, nutrient cycles and ecosystem management is examined to elucidate the importance of these organisms in soil ecosystems. As climate change is a major issue which has relation to soil biogeochemical cycles, the connection between soil microarthropods, biogeochemical cycles and climate change is discussed. Finally, research gaps are identified in soil biogeochemical cycle related microarthropod research, and important research areas related to this field are proposed. We believe that this chapter will be significant as a good reference related to soil microarthropods, biogeochemical cycles and climate change nexus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Dubey RK (2014) Integrating aboveground–belowground responses to climate change. Curr Sci 106(12):1637–1638

    Google Scholar 

  • Akamigbo FOR, Nnaji GU (2010) Climate change and Nigerian soils: vulnerability, impact and adaptation. J Trop Agric, Food, Environ Extension 10(1):80–90

    Google Scholar 

  • Amanda MK, Aimee TC, Justin PW (2018) Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. PNAS 115(32):E7541–E7549

    Article  CAS  Google Scholar 

  • Amato M, Ladd JN (1994) Application of the ninhydrin-reactive N assay for microbial biomass in acid soils. Soilless Biol Biochem 26:1109–1115

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci 130:211–216

    Article  CAS  Google Scholar 

  • Baguette M, Gerard S (1993) Effects of spruce plantations on carabid beetles in southern Belgium. Pedobiologia 37(3):129

    Google Scholar 

  • Bagyaraj DJ, Nethravathi CJ, Nitin KS (2016) Soil biodiversity and arthropods: role in soil fertility. Springer Science+Business Media Singapore

    Google Scholar 

  • Bale JS, Hayward SAL (2010) Animal resilience, adaptation and predictions for coping with change insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  CAS  PubMed  Google Scholar 

  • Beare MH, Coleman DC, Crossley DA et al (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In: In the significance and regulation of soil biodiversity. Springer, Dordrecht, pp 5–22

    Chapter  Google Scholar 

  • Brady NC, Weil RR (1999) Nature and properties of soil, 12th ed. Prentice Hall, New Jersey

    Google Scholar 

  • Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3:398–417

    Article  Google Scholar 

  • Callejas-Chavero A, Castano-Meneses G, Razo-Gonzalez M et al (2015) Soil microarthropods and their relationship to higher trophic levels in the Pedregal de san angel ecological reserve, Mexico. J Insect Sci 15(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrillo Y, Ball BA, Bradford MA et al (2011) Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil. Soil Biol Biochem 43(7):1440–1449

    Article  CAS  Google Scholar 

  • Cogger C, Brown S (2016) Soil formation and nutrient cycling. In: Brown S, McIvor K, Hodges SE (eds) Sowing seeds in the City: ecosystem and municipal services. Springer, Dordrecht, pp 325–338

    Google Scholar 

  • Coleman DC, Crossley DA Jr (1996) Fundamentals of soil ecology. Academic, San Diego

    Google Scholar 

  • Coleman DC, Callaham MA, Crossley DA (2018) Fundamentals of soil ecology, 3rd edn. Academic, London

    Google Scholar 

  • Crossley DA (1977) The roles of terrestrial saprophagous arthropods in forest soils: current status of concepts. In: In The role of arthropods in forest ecosystems. Springer, Berlin/Heidelberg, pp 49–56

    Chapter  Google Scholar 

  • Crossley DA, Bohnsack KK (1960) Long-term ecological study in the oak ridge area: III. The oribatid mite fauna in pine litter. Ecology 41(4):628–638

    Article  Google Scholar 

  • Crossley DA Jr, Mueller BR, Perdue JC (1992) Biodiversity of microarthropods in agricultural soils: relations to processes. Agric Ecosyst Environ 40(1–4):37–46

    Article  Google Scholar 

  • Culliney TW (2013) Role of arthropods in maintaining soil fertility. Agriculture 3:629–659

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3(1):52

    Article  Google Scholar 

  • De la Pena E (2009) Efectos de la biota edafica en las interacciones planta-insecto a nivel foliar. Ecosistemas 18:64–78

    Google Scholar 

  • Decaens T, Jimenez JJ, Gioia C, Meaey GJ, Lavelle P (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:S23–S38

    Article  Google Scholar 

  • Del Toro I, Ribbons RR, Elisson AM (2015) Ant-mediated ecosystem functions on a warmer planet: effects on soil movement, decomposition and nutrient cycling. J Anim Ecol 84(5):13

    Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502(7473):672

    Article  CAS  PubMed  Google Scholar 

  • Endlweber K, Scheu S (2007) Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol Fert Soils 43:741–749

    Article  Google Scholar 

  • Faber JH, Verhoef HA (1991) Functional differences between closely-related soil arthropods with respect to decomposition processes in the presence or absence of pine tree roots. Soil Biol Biochem 23(1):15–23

    Article  CAS  Google Scholar 

  • Facey SL, Fidler DB, Rowe RC et al (2017) Atmospheric change causes declines in woodland arthropods and impacts specific trophic groups. Agric For Entomol 19(1):101–112

    Article  Google Scholar 

  • Filser J (2002) The role of Collembola in carbon and nitrogen cycling in soil: proceedings of the Xth international colloquium on Apterygota, Ceske Budejovice 2000: Apterygota at the beginning of the third millennium. Pedobiologia 46(3–4):234–245

    Google Scholar 

  • Foissner W (1997) Soil ciliates (Protozoa: Ciliophora) from evergreen rain forests of Australia, South America and Costa Rica: diversity and description of new species. Biol Fertil Soils 25(4):317–339

    Article  Google Scholar 

  • Goud EM (2017) Diversity and abundance of litter-dwelling arthropods increase with time-since-burn in a Florida scrub ecosystem. Biodiversity 18(4):151–155

    Article  Google Scholar 

  • Gruneberg E, Ziche D, Wellbrock N (2014) Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Chang Biol 20:2644–2662

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagvar S, Klanderud K (2009) Effect of simulated environmental change on alpine soil arthropods. Glob Chang Biol 15:2972–2980

    Article  Google Scholar 

  • Hawksworth DA, Mound IA (1991) Biodiversity databases: the crucial significance of collections. In: The Biodiversity of Microorganisms and Invertebrates: Its role in sustainable agriculture. CAB. International, Wallingford

    Google Scholar 

  • Hugo-Coetzee EA, Le Roux PC (2018) Distribution of microarthropods across altitude and aspect in the sub-Antarctic: climate change implications for an isolated oceanic island. Acaralogia 58:43–60

    Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER et al (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soils 3(1–2):57–68

    Google Scholar 

  • Ingham ER, Trofymow JA, Ames R et al (1986) Trophic interactions and nitrogen cycling in a semi-arid grassland soil. I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J Appl Ecol 23:597–614

    Article  Google Scholar 

  • Ingham ER, Coleman DC, Moore JC (1989) An analysis of food-web structure and function in a shortgrass prairie, a mountain meadow, and a lodgepole pine forest. Biol Fertil Soils 8(1):29–37

    Google Scholar 

  • Jacot AP (1940) The fauna of the soil. Q Rev Biol 15(1):28–58

    Article  Google Scholar 

  • Jenny H (1994) Factors of soil formation: a system of quantitative pedology. Courier Corporation, New York

    Google Scholar 

  • Johnston JM (1996) Microarthropod ecology in managed loblolly pine (Pinus Taeda L.) forests: relations of Oribatid diversity and microarthropod community structure to forest management practices doctoral. dissertation, University of Georgia

    Google Scholar 

  • Johnston JM, Crossley DA Jr (2002) Forest ecosystem recovery in the southeast US: soil ecology as an essential component of ecosystem management. For Ecol Manag 155(1–3):187–203

    Article  Google Scholar 

  • Kardol P, Nicholas Reynolds WN, Norby RJ, Classen AT (2011) Climate change effects on soil microarthropod abundance and community structure. Appl Soil Ecol 47:37–44

    Article  Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4(2):51–73

    Article  CAS  Google Scholar 

  • Koltz AM, Schmidt NM, Hoye TT (2018) Differential arthropod responses to warming are altering the structure of Arctic communities. R Soc Open Sci 5(4):171503

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson WE, Pierce FJ (1991) Conservation and enhancement of soil quality. In: Evaluation for sustainable land management in the developing world: proceedings of the International Workshop on Evaluation for Sustainable Land Management in the Developing World, Chiang Rai, Thailand, pp 15–21

    Google Scholar 

  • Maharning AR, Mills AA, Adl SM (2008) Soil community changes during secondary succession to naturalized grasslands. Appl Soil Ecol 41:137–147

    Article  Google Scholar 

  • Mc Grath DA, Binkley MA (2009) Microstegium vimineum invasion changes soil chemistry and microarthropod communities in Cumberland plateau forests. Southeast Nat 8(1):141–157

    Article  Google Scholar 

  • Menta C (2012) Soil fauna diversity-function, soil degradation, biological indices, soil restoration. In: Biodiversity Conservation and Utilization in a Diverse World. Intech Open

    Google Scholar 

  • Moore JC (1988) The influence of microarthropods on symbiotic and non-symbiotic mutualism in detrital-based below-ground food webs. Agric Ecosyst Environ 24(1–3):147–159

    Article  Google Scholar 

  • Moss B (2011) Cogs in the endless machine: lakes, climate and nutrient cycles: a review. Sci Total Environ 434:130–142

    Article  PubMed  CAS  Google Scholar 

  • Nearing MA, Pruski FF, O’Neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50

    Google Scholar 

  • Okafor BN (2016) Soil carbon stock under some horticultural land use systems. In: Ishaya DB, Dantata IJ and Tiku NE (eds) 36th Proceedings of the Horticultural Society of Nigeria, pp 416–418

    Google Scholar 

  • Okoruwa VO (2010) Climate change and food production in sub Saharan Africa. In: Proceedings of 14th annual symposium of the International Association of Research Scholars and Fellows on 25/2/10, pp 57–76

    Google Scholar 

  • Osler GH, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88(7):1611–1621

    Article  PubMed  Google Scholar 

  • Palacios-Vargas JG, Castano-Meneses G, Mejıa-Recamier BE (2000) Collembola. In: Llorente J, Gonzalez-Soriano E, Papavero N (eds) Biodiversidad, taxonomia y biogeografia de artropodos de Mexico: Hacia una sintesis de su conocimiento, vol II. Universidad Nacional Autonoma de Mexico, Mexico

    Google Scholar 

  • Palmer SC, Norton RA (1990) Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Exp Appl Acarol 8(3):149–159

    Article  Google Scholar 

  • Pareek N (2017) Climate change impact on soils: adaptation and mitigation. MOJ Eco Environ Sci 2(3):00026

    Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661

    Article  Google Scholar 

  • Penuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C. N and P in Earth's life system Global Change Biology 18(1):3–6

    Article  Google Scholar 

  • Pettry E.D (2005) Mississipi soil surveys. Available online. http//msucres.com

  • Qafoku NP (2015) Climate-change effects on soils: accelerated weathering, soil carbon, and elemental cycling. Adv Agron 131:111–172

    Article  Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF et al (2007) Global desertification: building a science for dryland development. Science 316(5826):847–851

    Article  CAS  PubMed  Google Scholar 

  • Ruser R, Sehy U, Weber A (2008) Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM. In: Schroder P, Pfadenhauer J, Munch JC (eds) Perspectives for agroecosystem management. Balancing environmental and socio-economic demands, Elsevier, United Kingdom

    Google Scholar 

  • Schenker R (1986) Population dynamics of oribatid mites (Acari: Oribatei) in a forest soil ecosystem. Pedobiologia (Jena) 29(4):239–246

    Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL et al (1990) Biological feedbacks in global desertification. Science 247(4946):1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29(1):25–46

    Article  Google Scholar 

  • Siddiky MRK, Shaller J, Caruso T, Rillig MC (2012) Arbuscular mycorrhizal fungi and Collembola non-additively increase soil aggregation. Soil Biol Biochem 47:93–99

    Article  CAS  Google Scholar 

  • Soong JL, Vandegehuchte ML, Horton AJ et al (2016) Soil microarthropods support ecosystem productivity and soil C accrual: evidence from a litter decomposition study in the tallgrass prairie. Soil Biol Biochem 92:230–238

    Article  CAS  Google Scholar 

  • Steinaker DF, Wilson SD (2008) Scale and density dependent relationships among roots, mycorrhizal fungi and collembola in grassland and forest. Oikos 117:703–710

    Article  Google Scholar 

  • Sulkava P, Huhta V (2003) Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Appl Soil Ecol 22(3):225–239

    Article  Google Scholar 

  • Tate RL (2000) Soil microbiology. Wiley, New York

    Google Scholar 

  • Teuben A, Verhoef HA (1992) Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol Fertility Soil 14(2):71–75

    Article  CAS  Google Scholar 

  • Van Straalen MN (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Appl Soil Ecol 9:429–437

    Article  Google Scholar 

  • Van Vliet PCJ, Hendrix PF (2007) Role of fauna in soil physical processes. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Van Vliet PCJ, Beare MH, Coleman DC (1995) Population dynamics and functional roles of Enchytraeidae (Oligochaeta) in hardwood forest and agricultural ecosystems. Plant Soil 170(1):199–207

    Article  Google Scholar 

  • Walter DE (1985) Effects of litter type and elevation on colonization of mixed coniferous litterbags by oribatid mites. Pedobiologia

    Google Scholar 

  • Yan N, Marschner P, Cao W et al (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Conservation Research 3:316–323

    Article  Google Scholar 

  • Yang LH, Gratton C (2014) Insects as drivers of ecosystem processes. Current Opin Insect Sci 2:26–32

    Article  Google Scholar 

Download references

Acknowledgements

The first author thank School of Environmental Studies, CUSAT for providing facilities for conducting research. The work was completed with the financial support from UGC in the form of UGC SRF fellowship from Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Visconti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakshmi, G., Okafor, B.N., Visconti, D. (2020). Soil Microarthropods and Nutrient Cycling. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_18

Download citation

Publish with us

Policies and ethics