Advertisement

Navigating a Heavy Industry Environment Using Augmented Reality - A Comparison of Two Indoor Navigation Designs

Conference paper
  • 1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12191)

Abstract

The fourth industrial revolution seeks to enhance and optimize industrial processes through digital systems. However, such systems need to meet special criteria for usability and task support, ensuring users’ acceptance and safety. This paper presents an approach to support employees in heavy industries with augmented reality based indoor navigation and instruction systems. An experimental study examined two different user interface concepts (navigation path vs. navigation arrow) for augmented reality head-mounted-displays. In order to validate a prototypical augmented reality application that can be deployed in such production processes, a simulated industrial environment was created. Participants walked through the scenario and were instructed to work on representative tasks, while the wearable device offered assistance and guidance. Users’ perception of the system and task performance were assessed. Results indicate a superior performance of the navigation path design, as it granted participants significantly higher perceived support in the simulated working tasks. Nevertheless, the covered distance by the participants was significantly shorter in navigation arrow condition compared to the navigation path condition. Considering that the navigation path design resulted in a higher perceived Support, renders this design approach more suitable for assisting personnel working at industrial workplaces.

Keywords

Augmented reality Heavy industry Indoor navigation Work support HCI Experimental study 

Notes

Acknowledgments

This work was part of the DamokleS 4.0 project funded by the European Regional Development Fund (ERDF) [1], the European Union (EU) and the federal state North Rhine Westphalia. The authors thank Mathias Grimm, Ziyaad Qasem and Vanessa Dümpel for their preparations regarding the setup and help with data collection, as well as all participants contributing to the study.

References

  1. 1.
    EU regional development fund. https://ec.europa.eu/regional_policy/de/funding/erdf. Accessed 20 Jan 2020
  2. 2.
    HoloLens design principles. https://docs.microsoft.com/en-us/windows/mixed-reality/design. Accessed 20 Jan 2020
  3. 3.
  4. 4.
  5. 5.
    ISO 9241–2010. https://www.iso.org/standard/52075.html. Accessed 20 Jan 2020
  6. 6.
    Vuzix product. https://www.vuzix.com/. Accessed 20 Jan 2020
  7. 7.
    Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services (2011).  https://doi.org/10.1145/2037373
  8. 8.
    IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 16–19 September 2014, Barcelona, Spain. IEEE, Piscataway (2014)Google Scholar
  9. 9.
    Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997).  https://doi.org/10.1162/pres.1997.6.4.355CrossRefGoogle Scholar
  10. 10.
    Baek, S.H., Cha, S.H.: The trilateration-based BLE beacon system for analyzing user-identified space usage of new ways of working offices. Build. Environ. 149, 264–274 (2019).  https://doi.org/10.1016/j.buildenv.2018.12.030, http://www.sciencedirect.com/science/article/pii/S036013231830773X
  11. 11.
    Billinghurst, M., Grasset, R., Looser, J.: Designing augmented reality interfaces. ACM SIGGRAPH Comput. Graph. 39, 17–22 (2005).  https://doi.org/10.1145/1057792.1057803CrossRefGoogle Scholar
  12. 12.
    Choi, K., Marden, J.: An approach to multivariate rank tests in multivariate analysis of variance. J. Am. Stat. Assoc. 92(440), 1581–1590 (1997).  https://doi.org/10.1080/01621459.1997.10473680MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dörner, Ralf, Broll, Wolfgang, Grimm, Paul, Jung, Bernhard (eds.): Virtual und Augmented Reality (VR/AR). Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-28903-3CrossRefGoogle Scholar
  14. 14.
    Díaz Noguera, M.D., Toledo Morales, P., Hervás-Gómez, C.: Augmented reality applications attitude scale (araas): diagnosing the attitudes of future teachers. New Educ. Rev. 50, 215–226 (2017).  https://doi.org/10.15804/tner.2017.50.4.17CrossRefGoogle Scholar
  15. 15.
    Flick, U.: Qualitative Sozialforschung: Eine Einführung, Rororo Rowohlts Enzyklopädie, vol. 55694. rowohlts enzyklopädie im Rowohlt Taschenbuch Verlag, Reinbek bei Hamburg, originalausgabe, 8. auflage edn., August 2017Google Scholar
  16. 16.
    Flick, U., von Kardorff, E., Steinke, I. (eds.): Qualitative Forschung: Ein Handbuch, Rororo Rowohlts Enzyklopädie, vol. 55628. Rowohlts Enzyklopädie im Rowohlt Taschenbuch Verlag, Reinbek bei Hamburg, 12. auflage, originalausgabe edn. (2017)Google Scholar
  17. 17.
    Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios: a literature review (2015).  https://doi.org/10.13140/RG.2.2.29269.22248
  18. 18.
    Hermsen, K., et al.: Dynamic, adaptive and mobile system for context-based and intelligent support of employees in the steel industry contact data (2019)Google Scholar
  19. 19.
    Kim, J., Jun, H.: Vision-based location positioning using augmented reality for indoor navigation. IEEE Trans. Consum. Electron. 54(3), 954–962 (2008).  https://doi.org/10.1109/TCE.2008.4637573CrossRefGoogle Scholar
  20. 20.
    Kruijff, E., Swan, J.E., Feiner, S.: Perceptual issues in augmented reality revisited. In: Höllerer, T. (ed.) 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2010. pp. 3–12. IEEE, Piscataway (2010).  https://doi.org/10.1109/ISMAR.2010.5643530
  21. 21.
    Marín, E., Gonzalez Prieto, P., Maroto Gómez, M., Villegas, D.: Head-up displays in driving (2016)Google Scholar
  22. 22.
    Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: Bylund, M. (ed.) Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, p. 211. ACM, New York, NY (2011).  https://doi.org/10.1145/2037373.2037406
  23. 23.
    Narzt, W., Pomberger, G., Ferscha, A., Kolb, D., Müller, R., Wieghardt, J., Hörtner, H., Lindinger, C.: Augmented reality navigation systems. Univ. Access Inf. Soc. 4(3), 177–187 (2006).  https://doi.org/10.1007/s10209-005-0017-5CrossRefGoogle Scholar
  24. 24.
    Paelke, V.: Augmented reality in the smart factory: supporting workers in an industry 4.0. environment. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2014, pp. 1–4. IEEE, Piscataway (2014).  https://doi.org/10.1109/ETFA.2014.7005252
  25. 25.
    Peres, S.C., Pham, T., Phillips, R.: Validation of the system usability scale (SUS). Proc. Hum. Factors Ergon. Soc. Annu. Meet. 57(1), 192–196 (2013).  https://doi.org/10.1177/1541931213571043CrossRefGoogle Scholar
  26. 26.
    Pethig, F., Niggemann, O., Walter, A.: Towards industrie 4.0 compliant configuration of condition monitoring services. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 271–276, July 2017.  https://doi.org/10.1109/INDIN.2017.8104783
  27. 27.
    Qasem, Z., Bons, J., Borgmann, C., Eimler, S., Jansen, M.: Dynamic, adaptive, and mobile system for context-based and intelligent support of employees in heavy industry. In: 2018 Sixth International Conference on Enterprise Systems (ES), pp. 90–95. IEEE (2018).  https://doi.org/10.1109/ES.2018.00021
  28. 28.
    R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2014). http://www.R-project.org/
  29. 29.
    Rehman, U., Cao, S.: Augmented-reality-based indoor navigation: a comparative analysis of handheld devices versus google glass. IEEE Trans. Hum. Mach. Syst., 1–12 (2016).  https://doi.org/10.1109/THMS.2016.2620106
  30. 30.
    RStudio Team: RStudio: Integrated Development Environment for R. RStudio Inc., Boston, MA (2018). http://www.rstudio.com/
  31. 31.
    Salvendy, G.: Handbook of Human Factors and Ergonomics. Wiley, USA (2005)Google Scholar
  32. 32.
    Schmalsteig, D., Höllerer, T.: Augmented reality: principles and practice. In: ACM SIGGRAPH 2016 Courses, p. 1, July 2016.  https://doi.org/10.1145/2897826.2927365
  33. 33.
    Thomas, F., Ros, L.: Revisiting trilateration for robot localization. IEEE Trans. Robot. 21(1), 93–101 (2005).  https://doi.org/10.1109/TRO.2004.833793CrossRefGoogle Scholar
  34. 34.
    Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing, 3 edn. Elsevier/Academic Press, Amsterdam (2012). http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10521171
  35. 35.
    Zengeler, N., et al.: Person tracking in heavy industry environments with camera images. In: S-CUBE 2019–10th EAI International Conference on Sensor Systems and Software, November 2019Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of Applied Sciences Ruhr WestBottropGermany

Personalised recommendations