Abstract
Mentoring is the activity when an experienced person (the mentor) supports a less knowledgeable person (the mentee), in order to achieve the learning goal. In a perfect world, the mentor would be always available when the mentee needs it. However, in the real world higher education institutions work with limited resources. For this, we need to carefully design socio-technical infrastructures for scaling mentoring processes with the help of distributed artificial intelligence. Our approach allows universities to quickly set up a necessary data processing environment to support both mentors and mentees. The presented framework is based on open source standards and technologies. This will help leveraging the approach, despite the organizational and pedagogical challenges. The deployed infrastructure is already used by several universities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Brusilovsky, P., Peylo, C.: Adaptive and intelligent web-based educational systems. Int. J. AI Educ. 13, 159–172 (2003)
Dimitrova, V., Brna, P.: From interactive open learner modelling to intelligent mentoring: STyLE-OLM and beyond. Int. J. Artif. Intell. Educ. 26(1), 332–349 (2015). https://doi.org/10.1007/s40593-015-0087-3
Dugenie, P., Jonquet, C., Cerri, S.A.: The principle of immanence in GRID-multiagent integrated systems. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 98–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88875-8_29
Faulhaber, A., Melis, E.: An efficient student model based on student performance and metadata. In: Proceedings of ECAI 2008. Frontiers in Artificial Intelligence and Applications, pp. 276–280. IOS Press (2008)
Hoffman, R.R., Ward, P.: Mentoring: a leverage point for intelligent systems? IEEE Intell. Syst. 30(5), 78–84 (2015)
Klamma, R., Renzel, D., de Lange, P., Janßen, H.: las2peer - a primer. In: ResearchGate. ACIS Working Group Series (AWGS) (2016)
Kravčík, M., Schmid, K., Igel, C.: Towards requirements for intelligent mentoring systems. In: ABIS 2019, pp. 19–21. ACM Press (2019)
de Lange, P., Janson, T., Klamma, R.: Decentralized service registry and discovery in P2P networks using blockchain technology. In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp. 296–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7_22
Mack, N.A., Cummings, R., Huff, E.W., Gosha, K., Gilbert, J.E.: Exploring the needs and preferences of underrepresented minority students for an intelligent virtual mentoring system. In: Stephanidis, C., Antona, M. (eds.) HCII 2019. CCIS, vol. 1088, pp. 213–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30712-7_28
Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D(12), 1321–1329 (1994)
Neumann, A.T., de Lange, P., Klamma, R.: Collaborative creation and training of social bots in learning communities. In: IEEE CIC 2019. IEEE (2019)
Pipek, V., Wulf, V.: Infrastructuring: towards an integrated perspective on the design and use of information technology. J. Assoc. Inf. Syst. 10(5), 447–473 (2009)
Pirnay-Dummer, P., Ifenthaler, D.: Automated knowledge visualization and assessment. In: Ifenthaler, D., Pirnay-Dummer, P., Seel, N. (eds.) Computer-Based Diagnostics and Systematic Analysis of Knowledge, vol. 1, pp. 77–115. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-5662-0_6
Renzel, D., Behrendt, M., Klamma, R., Jarke, M.: Requirements bazaar: social requirements engineering for community-driven innovation. In: RE 2013, pp. 326–327. IEEE (2013)
Risquez, A., Sanchez-Garcia, M.: The Jury is still out: psychoemotional support in peer e-mentoring for transition to university. Internet High. Educ. 15(3), 213–221 (2012)
Toala, R., Gonçalves, F., Durães, D., Novais, P.: Adaptive and intelligent mentoring to increase user attentiveness in learning activities. In: Simari, G.R., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds.) IBERAMIA 2018. LNCS (LNAI), vol. 11238, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03928-8_12
Winkler, R., Söllner, M.: Unleashing the potential of chatbots in education: a state-of-the-art analysis. In: Academy of Management (2018)
Acknowledgments
The authors would like to thank the BMBF for their kind support within the project “Personalisierte Kompetenzentwicklung durch skalierbare Mentoringprozesse” (tech4comp) under the project id 16DHB2110.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Klamma, R. et al. (2020). Scaling Mentoring Support with Distributed Artificial Intelligence. In: Kumar, V., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2020. Lecture Notes in Computer Science(), vol 12149. Springer, Cham. https://doi.org/10.1007/978-3-030-49663-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-49663-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49662-3
Online ISBN: 978-3-030-49663-0
eBook Packages: Computer ScienceComputer Science (R0)