Skip to main content

Scaling Mentoring Support with Distributed Artificial Intelligence

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 2020)

Abstract

Mentoring is the activity when an experienced person (the mentor) supports a less knowledgeable person (the mentee), in order to achieve the learning goal. In a perfect world, the mentor would be always available when the mentee needs it. However, in the real world higher education institutions work with limited resources. For this, we need to carefully design socio-technical infrastructures for scaling mentoring processes with the help of distributed artificial intelligence. Our approach allows universities to quickly set up a necessary data processing environment to support both mentors and mentees. The presented framework is based on open source standards and technologies. This will help leveraging the approach, despite the organizational and pedagogical challenges. The deployed infrastructure is already used by several universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://xapi.com.

  2. 2.

    https://rasa.com.

References

  1. Brusilovsky, P., Peylo, C.: Adaptive and intelligent web-based educational systems. Int. J. AI Educ. 13, 159–172 (2003)

    Google Scholar 

  2. Dimitrova, V., Brna, P.: From interactive open learner modelling to intelligent mentoring: STyLE-OLM and beyond. Int. J. Artif. Intell. Educ. 26(1), 332–349 (2015). https://doi.org/10.1007/s40593-015-0087-3

    Article  Google Scholar 

  3. Dugenie, P., Jonquet, C., Cerri, S.A.: The principle of immanence in GRID-multiagent integrated systems. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 98–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88875-8_29

    Chapter  Google Scholar 

  4. Faulhaber, A., Melis, E.: An efficient student model based on student performance and metadata. In: Proceedings of ECAI 2008. Frontiers in Artificial Intelligence and Applications, pp. 276–280. IOS Press (2008)

    Google Scholar 

  5. Hoffman, R.R., Ward, P.: Mentoring: a leverage point for intelligent systems? IEEE Intell. Syst. 30(5), 78–84 (2015)

    Article  Google Scholar 

  6. Klamma, R., Renzel, D., de Lange, P., Janßen, H.: las2peer - a primer. In: ResearchGate. ACIS Working Group Series (AWGS) (2016)

    Google Scholar 

  7. Kravčík, M., Schmid, K., Igel, C.: Towards requirements for intelligent mentoring systems. In: ABIS 2019, pp. 19–21. ACM Press (2019)

    Google Scholar 

  8. de Lange, P., Janson, T., Klamma, R.: Decentralized service registry and discovery in P2P networks using blockchain technology. In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp. 296–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7_22

    Chapter  Google Scholar 

  9. Mack, N.A., Cummings, R., Huff, E.W., Gosha, K., Gilbert, J.E.: Exploring the needs and preferences of underrepresented minority students for an intelligent virtual mentoring system. In: Stephanidis, C., Antona, M. (eds.) HCII 2019. CCIS, vol. 1088, pp. 213–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30712-7_28

    Chapter  Google Scholar 

  10. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D(12), 1321–1329 (1994)

    Google Scholar 

  11. Neumann, A.T., de Lange, P., Klamma, R.: Collaborative creation and training of social bots in learning communities. In: IEEE CIC 2019. IEEE (2019)

    Google Scholar 

  12. Pipek, V., Wulf, V.: Infrastructuring: towards an integrated perspective on the design and use of information technology. J. Assoc. Inf. Syst. 10(5), 447–473 (2009)

    Google Scholar 

  13. Pirnay-Dummer, P., Ifenthaler, D.: Automated knowledge visualization and assessment. In: Ifenthaler, D., Pirnay-Dummer, P., Seel, N. (eds.) Computer-Based Diagnostics and Systematic Analysis of Knowledge, vol. 1, pp. 77–115. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-5662-0_6

    Chapter  Google Scholar 

  14. Renzel, D., Behrendt, M., Klamma, R., Jarke, M.: Requirements bazaar: social requirements engineering for community-driven innovation. In: RE 2013, pp. 326–327. IEEE (2013)

    Google Scholar 

  15. Risquez, A., Sanchez-Garcia, M.: The Jury is still out: psychoemotional support in peer e-mentoring for transition to university. Internet High. Educ. 15(3), 213–221 (2012)

    Article  Google Scholar 

  16. Toala, R., Gonçalves, F., Durães, D., Novais, P.: Adaptive and intelligent mentoring to increase user attentiveness in learning activities. In: Simari, G.R., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds.) IBERAMIA 2018. LNCS (LNAI), vol. 11238, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03928-8_12

    Chapter  Google Scholar 

  17. Winkler, R., Söllner, M.: Unleashing the potential of chatbots in education: a state-of-the-art analysis. In: Academy of Management (2018)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the BMBF for their kind support within the project “Personalisierte Kompetenzentwicklung durch skalierbare Mentoringprozesse” (tech4comp) under the project id 16DHB2110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Klamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klamma, R. et al. (2020). Scaling Mentoring Support with Distributed Artificial Intelligence. In: Kumar, V., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2020. Lecture Notes in Computer Science(), vol 12149. Springer, Cham. https://doi.org/10.1007/978-3-030-49663-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49663-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49662-3

  • Online ISBN: 978-3-030-49663-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics