Advertisement

Non-equilibrium Model for Weakly Compressible Multi-component Flows: The Hyperbolic Operator

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

We present a novel pressure-based method for weakly compressible multiphase flows, based on a non-equilibrium Baer and Nunziato-type model. Each component is described by its own thermodynamic model, thus the definition of a mixture speed of sound is not required. In this work, we describe the hyperbolic operator, without considering relaxation terms. The acoustic part of the governing equations is treated implicitly to avoid the severe restriction on the time step imposed by the CFL condition at low-Mach. Particular care is taken to discretize the non-conservative terms to avoid spurious oscillations across multi-material interfaces. The absence of oscillations and the agreement with analytical or published solutions is demonstrated in simplified test cases, which confirm the validity of the proposed approach as a building block on which developing more accurate and comprehensive methods.

Keywords

Non-equilibrium multiphase flows Low-mach scheme Diffuse interface methods 

Notes

Acknowledgments

This publication has been produced with support from the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, Ansaldo Energia, CoorsTek Membrane Sciences, Emgs, Equinor, Gassco, Krohne, Larvik Shipping, Norcem, Norwegian Oil and Gas, Quad Geometrics, Shell, Total, Vår Energi, and the Research Council of Norway (257579/E20).

References

  1. 1.
    Munkejord, S.T., Hammer, M.: Int. J. Greenhouse Gas Control 37, 398 (2015).  https://doi.org/10.1016/j.ijggc.2015.03.029CrossRefGoogle Scholar
  2. 2.
    Coquel, F., Hérard, J.M., Saleh, K.: J. Comput. Phys. 330, 401 (2017).  https://doi.org/10.1016/j.jcp.2016.11.017MathSciNetCrossRefGoogle Scholar
  3. 3.
    Wenneker, I., Segal, A., Wesseling, P.: Int. J. Numer. Methods Fluids 40(9), 1209 (2002).  https://doi.org/10.1002/fld.417CrossRefGoogle Scholar
  4. 4.
    Guillard, H., Viozat, C.: Comput. Fluids 28(1), 63 (1999).  https://doi.org/10.1016/S0045-7930(98)00017-6MathSciNetCrossRefGoogle Scholar
  5. 5.
    Guillard, H., Murrone, A.: Comput. Fluids 33(4), 655 (2004).  https://doi.org/10.1016/j.compfluid.2003.07.001CrossRefGoogle Scholar
  6. 6.
    Xiao, F.: J. Comput. Phys. 195(2), 629 (2004).  https://doi.org/10.1016/j.jcp.2003.10.014MathSciNetCrossRefGoogle Scholar
  7. 7.
    Harlow, F.H., Amsden, A.A.: J. Comput. Phys. 3(1), 80 (1968).  https://doi.org/10.1016/0021-9991(68)90007-7CrossRefGoogle Scholar
  8. 8.
    Bijl, H., Wesseling, P.: J. Comput. Phys. 141(2), 153 (1998).  https://doi.org/10.1006/JCPH.1998.5914MathSciNetCrossRefGoogle Scholar
  9. 9.
    Munz, C.D., Roller, S., Klein, R., Geratz, K.J.: Comput. Fluids 32(2), 173 (2003).  https://doi.org/10.1016/S0045-7930(02)00010-5MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kwatra, N., Su, J., Grétarsson, J.T., Fedkiw, R.: J. Comput. Phys. 228(11), 4146 (2009).  https://doi.org/10.1016/J.JCP.2009.02.027MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ventosa-Molina, J., Chiva, J., Lehmkuhl, O., Muela, J., Pérez-Segarra, C.D., Oliva, A.: Int. J. Numer. Methods Fluids 84(6), 309 (2017).  https://doi.org/10.1002/fld.4350CrossRefGoogle Scholar
  12. 12.
    Saurel, R., Pantano, C.: Ann. Rev. Fluid Mech. 50, 105 (2018).  https://doi.org/10.1146/annurev-fluid-122316-050109CrossRefGoogle Scholar
  13. 13.
    Baer, M.R., Nunziato, J.W.: Int. J. Multiphase Flow 6, 861 (1986)CrossRefGoogle Scholar
  14. 14.
    Pandare, A.K., Luo, H.: J. Comput. Phys. 371, 67 (2018).  https://doi.org/10.1016/j.jcp.2018.05.018MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bernard, M., Dellacherie, S., Faccanoni, G., Grec, B., Penel, Y.: ESAIM Math. Model. Numer. Anal. 48(6), 1639 (2014).  https://doi.org/10.1051/m2an/2014015MathSciNetCrossRefGoogle Scholar
  16. 16.
    Saurel, R., Abgrall, R.: J. Comput. Phys. 150(2), 425 (1999).  https://doi.org/10.1006/JCPH.1999.6187MathSciNetCrossRefGoogle Scholar
  17. 17.
    Abgrall, R., Bacigaluppi, P., Tokareva, S.: Comput. Fluids (2017).  https://doi.org/10.1016/J.COMPFLUID.2017.08.019CrossRefGoogle Scholar
  18. 18.
    Abgrall, R., Karni, S.: J. Comput. Phys. 229(8), 2759 (2010).  https://doi.org/10.1016/j.jcp.2009.12.015MathSciNetCrossRefGoogle Scholar
  19. 19.
    Abgrall, R.: J. Comput. Phys. 125(1), 150 (1996).  https://doi.org/10.1006/JCPH.1996.0085MathSciNetCrossRefGoogle Scholar
  20. 20.
    Saurel, R., Chinnayya, A., Carmouze, Q.: Phys. Fluids 29(6), 1 (2017).  https://doi.org/10.1063/1.4985289CrossRefGoogle Scholar
  21. 21.
    Paill‘ere, H., Corre, C., García Cascales, J.: Comput. Fluids 32, 891 (2003).  https://doi.org/10.1016/S0045-7930(02)00021-X
  22. 22.
    Haller, K.K., Ventikos, Y., Poulikakos, D.: J. Appl. Phys. 93(5), 3090 (2003).  https://doi.org/10.1063/1.1543649CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.Institute of MathematicsUniversität ZürichZürichSwitzerland

Personalised recommendations