Skip to main content

Sheath Physics

  • Chapter
  • First Online:
On the Edge of Magnetic Fusion Devices

Abstract

Although the physics of the “sheath”, a thin layer of plasma just in front of the material surface, has been studied for more than 100 years, the peculiarities of fusion devices, such as strong magnetic field, a shallow angle at which the magnetic field lines intersect the material surface, and inhomogeneity of the plasma parameters, bring some new and important features in this topic, which are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bohm, E.H.S. Burhop, H.S.W. Massey, The Characteristic of Electrical Discharges in Magnetic Fields (McGraw-Hill, New York, 1949) Chapter 2

    Google Scholar 

  2. R. Chodura, Plasma-wall transition in an oblique magnetic field. Phys. Fluids 25, 1628–1633 (1982)

    Article  ADS  Google Scholar 

  3. K.-U. Riemann, Theory of the collisional presheath in an oblique magnetic field. Phys. Plasmas 1, 552–558 (1994)

    Article  ADS  Google Scholar 

  4. A.B. Mikhailovskii, Theory of plasma instabilities, in Instabilities in a Homogeneous Plasma, vol. 1, (Springer, New York, 1974)

    Chapter  Google Scholar 

  5. S.D. Baalrud, C.C. Hegna, Kinetic theory of the presheath and the Bohm criterion. Plasma Sources Sci. Technol. 20, 025013 (2011)

    Article  ADS  Google Scholar 

  6. E.R. Harrison, W.B. Thompson, The low pressure plane symmetric discharge. Proc. Phys. Soc. 74, 145–152 (1959)

    Article  ADS  Google Scholar 

  7. K. Aoki, Y. Sone, T. Yamada, Numerical analysis of gas flows condensing on its plane condensation phase on the basis of kinetic theory. Phys. Fluids A2, 1867–1878 (1990)

    Article  ADS  Google Scholar 

  8. L.D. Landau, L.M. Lifshitz, Fluid mechanics, in Course of Theoretical Physics, vol. 6, 2nd edn., (Butterworth-Heinemann, Oxford, 1987)

    Google Scholar 

  9. J.E. Allen, A note on the generalized sheath criterion. J. Phys. D. Appl. Phys. 9, 2331–2332 (1976)

    Article  ADS  Google Scholar 

  10. R.H. Cohen, D.D. Ryutov, Particle trajectories in a sheath in a strongly tilted magnetic field. Phys. Plasmas 5, 808–817 (1998)

    Article  ADS  Google Scholar 

  11. K.-U. Riemann, Comment on ‘kinetic theory of the presheath and the Bohm criterion’. Plasma Sources Sci. Technol. 21, 068011 (2012)

    Article  ADS  Google Scholar 

  12. V. Rozhansky, E. Kaveeva, P. Molchanov, I. Veselova, S. Voskoboynikov, D. Coster, G. Counsell, A. Kirk, S. Lisgo, The ASDEX-Upgrade Team and The MAST Team, New B2SOLPS5.2 transport code for H-mode regimes in tokamaks. Nucl. Fusion 49, 025007 (2009)

    Article  ADS  Google Scholar 

  13. Z. Guo, X.-Z. Tang, Ambipolar transport via trapped-electron whistler instability along open magnetic field lines. Phys. Rev. Lett. 109, 135005 (2012)

    Article  ADS  Google Scholar 

  14. K.-U. Riemann, Kinetic analysis of the collisional plasma–sheath transition. J. Phys. D. Appl. Phys. 36, 2811–2820 (2003)

    Article  ADS  Google Scholar 

  15. S. Kuhn, K.-U. Riemann, N. Jelić, D.D. Tskhakaya Sr., D. Tskahaya Jr., Link between fluid and kinetic parameters near the plasma boundary. Phys. Plasmas 13, 013503 (2006)

    Article  ADS  Google Scholar 

  16. I.H. Hutchinson, The magnetic presheath boundary condition with E×B drifts. Phys. Plasmas 3, 6–7 (1996)

    Article  ADS  Google Scholar 

  17. A.V. Chankin, P.C. Stangeby, The effect of diamagnetic drift on the boundary conditions in tokamak scrape-off layers and the distribution of plasma fluxes near the target. Plasma Phys. Control. Fusion 36, 1485–1499 (1994)

    Article  ADS  Google Scholar 

  18. R.H. Cohen, D.D. Ryutov, Sheath physics and boundary conditions for edge plasmas. Contrib. Plasma Phys. 44, 111–125 (2004)

    Google Scholar 

  19. R.H. Cohen, D.D. Ryutov, Non-steady-state boundary conditions for a sheath in a tilted magnetic field. Plasma Phys. Rep. 23, 805–809 (1997)

    Google Scholar 

  20. G.D. Hobbs, J.A. Wesson, Heat flow through a Langmuir sheath in the presence of electron emission. Plasma Phys. 9, 85–87 (1967)

    Article  ADS  Google Scholar 

  21. M.Y. Ye, S. Masuzaki, K. Shiraishi, S. Takamura, N. Ohno, Nonlinear interactions between high heat flux plasma and electron-emissive hot material surface. Phys. Plasmas 3, 281–292 (1996)

    Article  ADS  Google Scholar 

  22. M.Z. Tokar, A.V. Nedospasov, A.V. Yaroshkin, The possible nature of hot spots on tokamak walls. Nucl. Fusion 32, 15–24 (1992)

    Article  ADS  Google Scholar 

  23. M.D. Companell, Negative plasma potential relative to electron-emitting surfaces. Phys. Rev. E 88, 033103 (2013)

    Article  ADS  Google Scholar 

  24. M.D. Companell, M.V. Umansky, Strongly emitting surfaces unable to float below plasma potential. Phys. Rev. Lett. 116, 085003 (2016)

    Article  ADS  Google Scholar 

  25. M.D. Companell, G.R. Johnson, Thermionic cooling of the target plasma to a sub-eV temperature. Phys. Rev. Lett. 226, 015003 (2019)

    Article  ADS  Google Scholar 

  26. R. Masline, R.D. Smirnov, S.I. Krasheninnikov, Influence of the inverse sheath on divertor plasma performance in tokamak edge plasma simulations. To appear in Contrib. Plasma Phys. (2020)

    Google Scholar 

  27. C. Ionita, J. Grünwald, C. Maszl, R. Stärz, M. Čerček, B. Fonda, T. Gyergyek, G. Filipič, J. Kovačič, C. Silva, H. Figueiredo, T. Windisch, O. Grulke, T. Klinger, R. Schrittwieser, The use of emissive probes in laboratory and tokamak plasmas. Contrib. Plasma Phys. 51, 264–270 (2011)

    Google Scholar 

  28. B.F. Kraus, Y. Raitses, Floating potential of emitting surfaces in plasmas with respect to the space potential. Phys. Plasmas 25, 030701 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasheninnikov, S., Smolyakov, A., Kukushkin, A. (2020). Sheath Physics. In: On the Edge of Magnetic Fusion Devices. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-49594-7_4

Download citation

Publish with us

Policies and ethics