Skip to main content

Important Electrocatalytic Reactions

  • Chapter
  • First Online:
Platinum Monolayer Electrocatalysts

Abstract

Important catalytic reactions for aqueous fuel cells, for example hydrogen and oxygen reduction and evolution, and oxidation of alternative fuels for fuel cells like hydrogen, methanol, ethanol, and formic acid are given in some detail. Although the platinum group of metals are the best catalysts for all reactions as DFT calculations predict, their activity is still relatively low. At the anode side of fuel cells, methanol and formic acid on Pt oxidize at high positive potentials beyond technological interest, and addition of second component that lowers the oxidation onset by supplying oxygen-containing species is needed. Complex kinetics of ethanol oxidation requires additional components to break the C–C bond. On the cathode side, major losses in overall cell voltage come from the complex kinetics of oxygen reduction and its low activity. Early attempts to increase the activity of Pt-based catalysts were mostly concentrated on decreasing the particle size to increase the surface to volume ratio of noble metals and alloying with other metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Tarasevich, A. Sadkowski, E. Yeager, in Comprehensive Treatise of Electrochemistry, ed. by B. Conway, J. O. Bockris, E. Yeager, S. U. M. Khan, R. E. M. White, vol. 7, (Plenum Press, New York, 1983)

    Google Scholar 

  2. R. Adzic, Recent advances in the kinetics of oxygen reduction, in Electrocatalysis, ed. by J. Lipkowski, P. N. Ross, (Wiley, New York, 1998)

    Google Scholar 

  3. G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, Article number: 416 (2011)

    Article  CAS  Google Scholar 

  5. K.A. Kuttiyiel, Y.M. Choi, S.-M. Hwang, G.-G. Park, T.-H. Yang, D. Su, K. Sasaki, P. Liu, R.R. Adzic, Enhancement of the oxygen reduction on nitride stabilized Pt-M (M= Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy 13, 442–449 (2015)

    Article  CAS  Google Scholar 

  6. R.W. Zurilla, R.K. Sen, E. Yeager, The kinetics of the oxygen reduction reaction on gold in alkaline solution. J. Electrochem. Soc. 125, 1103–1109 (1978)

    Article  CAS  Google Scholar 

  7. R.R. Adzic, J.X. Wang, Configuration and site of O2 adsorption on the Pt(111) electrode surface. J. Phys. Chem. 102, 8988–8993 (1998)

    Article  CAS  Google Scholar 

  8. A. Damjanovic, in Modern Aspects of Electrochemistry, ed. by B. JOM, B. Conway, vol. 5, (Plenum Press, New York, 1969)

    Google Scholar 

  9. J.O.M. Bockris, A.K.M.S. Huq, The mechanism of the electrolytic evolution of oxygen on platinum. Proc. R. Soc. Lond. Ser. A 237, 277–296 (1956)

    Article  CAS  Google Scholar 

  10. H.S. Wroblowa, Yen-Chi-Pan, G. Razumney, Electroreduction of oxygen: A new mechanistic criterion. J. Electroanal. Chem. 69, 195–201 (1976)

    Article  CAS  Google Scholar 

  11. N.A. Anastasijevic, V. Vesovic, R.R. Adzic, Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode. Part I. Theory, Part II. Applications. J. Electroanal. Chem. 229, 305–316, 229:317–325 (1987)

    Article  CAS  Google Scholar 

  12. S.J. Clouser, J.C. Huang, E. Yeager, Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J. Appl. Electrochem. 23, 597–605 (1993)

    Article  CAS  Google Scholar 

  13. D.B. Sepa, M.V. Vojnovic, A. Damjanovic, Reaction intermediates as a controlling factor in the kinetics and mechanisms of oxygen reduction at platinum electrodes. Electrochim. Acta 26, 781–793 (1981)

    Article  CAS  Google Scholar 

  14. B. Grgur, N.M. Markovic, P.N. Ross Jr., Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Can. J. Chem. 75, 1465–1471 (1997)

    Article  CAS  Google Scholar 

  15. M.S. Wilson, J.A. Valerio, S. Gottesfeld, Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 40, 355–363 (1995)

    Article  CAS  Google Scholar 

  16. M.H. Shao, K. Sasaki, R.R. Adzic, Pt-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 128, 3526–3527 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. U.A. Paulus, A. Wokaun, G.G. Sherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B 106, 4181–4191 (2002)

    Article  CAS  Google Scholar 

  18. V. Jalan, E.J. Tayler, Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J. Electrochem. Soc. 130, 2299–2302 (1983)

    Article  CAS  Google Scholar 

  19. F.H.B. Lima, W.H. Lizcano-Valbuena, E. Teiheira-Neto, F.C. Nart, E.R. Gonzalez, E.A. Ticianelli, Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim. Acta 52, 385–393 (2006)

    Article  CAS  Google Scholar 

  20. B. Hammer, J.K. Norskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995)

    Article  CAS  Google Scholar 

  21. B. Hammer, J.K. Norskov, Theroethical surface science and catalysis – Calculations and concepts, in Advances in Catalysis, vol. 45: Impact of Surface Science on Catalysis, (Wiley-VCH, Weinheim, 2000), pp. 71–129

    Chapter  Google Scholar 

  22. J.A. Herron, S. Tonelli, M. Mavrikakis, Atomic and molecular adsorption on Ru(0001). Surf. Sci. 614, 64–74

    Google Scholar 

  23. J.A. Turner, A realizable renewable energy future. Science 285(5428), 687–689 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. J.O.M. Bockris, B.E. Conway, E. Yeager, R.E. White, Comprehensive Treatise of Electrochemistry. Vol. 2: Electrochemical Processing (Plenum Press, New York, 1981), pp. 1–105

    Book  Google Scholar 

  25. S.A. Grigoriev, V.I. Porembsky, V.N. Fateev, Pure hydrogen production by PEM electrolysis for hydrogen energy. Int. J. Hydrog. Energy 31, 171–175 (2006)

    Article  CAS  Google Scholar 

  26. N. Krstajić, M. Popović, B. Grgur, M. Vojnović, D. Šepa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. Part I. The mechanism. J. Electroanal. Chem. 512, 16–26 (2001)

    Article  Google Scholar 

  27. S. Trasatti, Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972)

    Article  CAS  Google Scholar 

  28. S. Srinivasan, F.J. Salzano, Prospects for the hydrogen production by water electrolysis to be competitive with conventional methods. Int. J. Hydrog. Energy 2, 53–59 (1977)

    Article  Google Scholar 

  29. N. Elezović, V.D. Jović, N.V. Krstajić, Kinetics of the hydrogen evolution reaction on Fe-Mo film deposited on mild steel support in alkaline solution. Electrochim. Acta 50(28), 5594–5601 (2005)

    Article  CAS  Google Scholar 

  30. M.M. Jakšić, Brewer intermetallic phases as synergetic electrocatalysts for hydrogen evolution. Mater. Chem. Phys. 22, 1–26

    Google Scholar 

  31. G. Imarisio, Progress in water electrocatalysis at the conclusion of the first hydrogen programme of the European communities. Int. J. Hydrog. Energy 6, 153–158 (1981)

    Article  CAS  Google Scholar 

  32. D. Galizzioli, F. Tantardini, S. Trasatti, Ruthenium dioxide: A new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions. J. Appl. Electrochem. 5, 203–214 (1975)

    Article  CAS  Google Scholar 

  33. D. Baronetto, N. Krstajić, S. Trassatti, Reply to: “Note on a method to interrelate inner and outer electrode areas” by H.Vogt. Electrochim. Acta 39, 2359–2362 (1994)

    Article  CAS  Google Scholar 

  34. P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 606, 679–689

    Google Scholar 

  35. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007)

    Article  CAS  Google Scholar 

  36. M.B. Vukmirovic, P. Liu, J.T. Muckerman, R.R. Adzic, Electrodeposition of Pt onto RuO2(110) single-crystal surface. J. Phys. Chem. C 111, 15306 (2007)

    Article  CAS  Google Scholar 

  37. J. Tafel, The polarisation of cathodic hydrogen development. Z Phys Chem Stoch Verwandt 50, 641–712 (1905)

    Article  CAS  Google Scholar 

  38. J. Heyrovsky, A theory of overpotential. Recl Trav Chim Des Pays-Bas 46, 582–585 (1927)

    Article  CAS  Google Scholar 

  39. T. Erdey-Gruz, M. Volmer, The theory of hydrogen high tension. Z Phys Chem Abt Chem Thermodyn Kin Elektrochem Eig 150, 203–213 (1930)

    CAS  Google Scholar 

  40. K. Kunimatsu, H. Uchida, M. Osawa, et al., In situ infrared spectroscopic and electrochemical study of hydrogen electro-oxidation on Pt electrode in sulfuric acid. J. Electroanal. Chem. 587, 299–307 (2006)

    Article  CAS  Google Scholar 

  41. G. Jerkiewicz, Hydrogen sorption at/in electrodes. Prog. Surf. Sci. 57, 137–186 (1998)

    Article  CAS  Google Scholar 

  42. J.X. Wang, T.E. Springer, P. Liu, et al., Hydrogen oxidation reaction on Pt in acidic media: Adsorption isotherm and activation free energies. J. Phys. Chem. C 111, 12425–12433 (2007)

    Article  CAS  Google Scholar 

  43. E. Skulason, V. Tripkovic, M.E. Bjorketun, et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 22374 (2010)

    Article  CAS  Google Scholar 

  44. W. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 157(11), B1529–B1536 (2010)

    Article  CAS  Google Scholar 

  45. S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. 105(52), 20611–20614 (2008)

    Article  CAS  PubMed Central  Google Scholar 

  46. J.X. Wang, S.R. Brankovic, R.R. Adzic, Pt submonolayers on Ru nanoparticles – A novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem. Solid-State Lett. 4, A217–A220 (2001)

    Article  Google Scholar 

  47. K. Sasaki, J.X. Wang, M. Balasubramanian, J. McBreen, F. Uribe, R.R. Adzic, Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim. Acta 49, 3873–3877 (2004)

    Article  CAS  Google Scholar 

  48. Z. Liu, G.S. Jackson, B.W. Eichhorn, PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed. 49, 3173–3176 (2010)

    Article  CAS  Google Scholar 

  49. H. Uchida, K. Izumi, K. Aoki, M. Watanabe, Temperature-dependence of hydrogen oxidation reaction rates and CO-tolerance at carbon-supported Pt, Pt-Co, and Pt-Ru catalysts. Phys. Chem. Chem. Phys. 11, 1771–1779 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. Y.H. Cho, B. Choi, Y.H. Cho, H.S. Park, Y.E. Sung, Pd-based PdPt(19: 1)/C electrocatalyst as an electrode in PEM fuel cell. Electrochem. Commun. 9, 378–381 (2007)

    Article  CAS  Google Scholar 

  51. K. Sasaki, K.A. Kuttiyiel, L. Barrio, D. Su, A.I. Frenkel, N. Marinkovic, D. Mahajan, R.R. Adzic, Carbon-supported IrNi core-shell nanoparticles: Synthesis, characterization, and catalytic activity. J. Phys. Chem. C 115, 9894–9902 (2011)

    Article  CAS  Google Scholar 

  52. A. Hamnett, Direct methanol fuel cells (DMFC), in Handbook of Fuel Cells: Fundamentals and Survey of Systems, ed. by W. Vielstich, A. Lamm, H. Gasteiger, vol. 1, (Wiley, Chichester, 2003), pp. 305–322. (Chap 18)

    Google Scholar 

  53. T. Iwasita, F. Nart, W. Vielsctich, Ber. Bunsenges. Phys. Chem. 94, 1030–1034 (1990)

    Article  CAS  Google Scholar 

  54. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.-M. Léger, C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. J. Electroanal. Chem. 444, 41–53 (1998)

    Article  CAS  Google Scholar 

  55. E.M. Belgsir, H. Huser, J.-M. Leger, C. Lamy, A kinetic analysis of the oxidation of methanol at platinum-based electrodes by quantitative determination of the reaction products using liquid chromatography. J. Electroanal. Chem. 225, 281–286 (1987)

    Article  CAS  Google Scholar 

  56. H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Methanol electroxidation on wellcharacterized Pt-Ru alloys. J. Phys. Chem. 97, 12020–12029 (1993)

    Article  CAS  Google Scholar 

  57. M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms. 2. Enhancement of oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 267–283 (1975)

    Article  CAS  Google Scholar 

  58. S. Mukerjee, R.C. Urian, Bifunctionality in Pt alloy nanocluster electrocatalysis for enhanced methanol oxidation and CO tolerance in PEM fuel cells: Electrochemical and in situ synchrotron spectroscopy. Electrochim. Acta 47(19), 3219–3231 (2002)

    Article  CAS  Google Scholar 

  59. W. Chrzanowski, A. Wieckowski, Ultrathin films of ruthenium on low index platinum single crystal surfaces: An electrochemical study. Langmuir 13, 5974–5978 (1997)

    Article  CAS  Google Scholar 

  60. C.H. Chen, L.S. Sarma, D.Y. Wang, F.J. Lai, C.C. Al Andra, S.H. Chang, D.G. Liu, C.C. Chen, J.F. Lee, B.J. Hwang, Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation. ChemCatChem 2, 159–166 (2010)

    Article  CAS  Google Scholar 

  61. K. Sasaki, R.R. Adzic, Monolayer-level Ru- and NbO2-supported platinum electrocatalysts for methanol oxidation. J. Electrochem. Soc. 105, B180–B186 (2008)

    Article  CAS  Google Scholar 

  62. J.X. Wang, S.R. Brankovic, Y. Zhu, J.C. Hanson, R.R. Adzic, Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J. Electrochem. Soc. 150, A1108–A1117 (2003)

    Article  CAS  Google Scholar 

  63. C. Lamy, C. Coutanceau, J.-M. Leger, The direct ethanol fuel cell: A challenge to convert bioethanol cleanly into electric energy, in Catalysis for Sustainable Energy Production, ed. by P. Barbaro, C. Bianchini, (WILEY-VCH Verlag GmbH & Co. kGaA, Weinheim, 2009)

    Google Scholar 

  64. G.A. Camara, T. Iwasita, Parallel pathways of ethanol oxidation: The effect of ethanol concentration. J. Electroanal. Chem. 578, 315–321 (2005)

    Article  CAS  Google Scholar 

  65. Y. Wang, S. Zou, W.-B. Cai, Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysis 5, 1507–1534 (2015)

    CAS  Google Scholar 

  66. M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: Direct ethanol fuel cells. Int. J. Hydrog. Energy 38, 9438–9453 (2013)

    Article  CAS  Google Scholar 

  67. T. Iwasita, E. Pastor, A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim. Acta 39, 531 (1994)

    Article  CAS  Google Scholar 

  68. S.C.S. Lai, S.E.F. Kleyn, V. Rosca, M.T.M. Koper, Mechanism of the dissociation and electrooxidation of ethanol and acetaldehyde on platinum as studied by SERS. J. Phys. Chem. C 112, 19080 (2008)

    Article  CAS  Google Scholar 

  69. M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 267–273 (1975)

    Article  CAS  Google Scholar 

  70. J.A.R. Van Veen, T. Frelink, W. Visscher, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf. Sci. 335, 353–360 (1995)

    Article  Google Scholar 

  71. U.B. Demirci, Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 173, 11 (2007)

    Article  CAS  Google Scholar 

  72. H. Wang, Z. Jusus, R.J. Behm, Ethanol electrooxidation on a carbon-supported Pt catalyst: Reaction kinetics and product yields. J. Phys. Chem. B 108, 19413 (2004)

    Article  CAS  Google Scholar 

  73. A. Kowal, M. Li, M. Shao, K. Sasaki, V.B. Vukmirovic, J. Zhang, N.S. Marinkovic, P. Liu, A.I. Frenkel, R.R. Adzic, Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 8, 325–330 (2009)

    Article  CAS  PubMed  Google Scholar 

  74. H. Idriss, Ethanol reaction over the surfaces of noble metal/cerium oxide catalysts. Platin. Met. Rev. 48(3), 105–115 (2004)

    Article  CAS  Google Scholar 

  75. A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuel 19, 2098–2106 (2005)

    Article  CAS  Google Scholar 

  76. M. Li, A. Kowal, K. Sasaki, N.S. Marinkovic, D. Su, E. Korach, P. Liu, R.R. Adzic, Ethanol oxidation on the ternary Pt-Rh-SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim. Acta 55, 4331–4338 (2010)

    Article  CAS  Google Scholar 

  77. A. Kowal, S. Gojkovic, K.S. Leed, P. Olszewski, Y.-E. Sung, Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt-Rh, Pt-SnO2 and Pt-Rh-SnO2 nanoclusters. Electrochem. Commun. 11, 724–727 (2009)

    Article  CAS  Google Scholar 

  78. W. Du, Q. Wang, C.A. LaScala, L. Zhang, D. Su, A.I. Frenkel, V.K. Mathura, X. Teng, Ternary PtSnRh–SnO2 nanoclusters: Synthesis and electroactivity for ethanol oxidation fuel cell reaction. J. Mater. Chem. 21, 8887–8892 (2011)

    Article  CAS  Google Scholar 

  79. Y. Choi, P. Liu, Understanding of ethanol decomposition on Rh(111) from density functional theory and kinetic Monte Carlo simulations. Catal. Today 165, 64–70 (2011)

    Article  CAS  Google Scholar 

  80. M. Li, D. Cullen, K. Sasaki, N.S. Marinkovic, K. More, R.R. Adzic, Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: Making Ir capable of splitting C–C bond. J. Am. Chem. Soc. 135, 132–141 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. H.S. Kim, R.D. Morgan, B. Gurau, R.I. Masel, A miniature direct formic acid fuel cell battery. J. Power Sources 188(1), 118–121 (2009)

    Article  CAS  Google Scholar 

  82. X. Wang, J.-M. Hu, I.M. Hsing, Electrochemical investigation of formic acid electrooxidation and its crossover through a Nafion membrane. J. Electroanal. Chem. 562(1), 73–80 (2004)

    Article  CAS  Google Scholar 

  83. C. Rice, S. Ha, R.I. Masel, P. Waszcuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells. J. Power Sources 111, 83–89 (2002)

    Article  CAS  Google Scholar 

  84. A. Capon, R. Parsons, Oxidation of formic acid at noble metal electrodes, Part 3: Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. 45, 205–231 (1973)

    Article  CAS  Google Scholar 

  85. N.M. Markovic, P.N. Ross Jr., Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002)

    Article  CAS  Google Scholar 

  86. H. Miyake, T. Okada, G. Samjeske, M. Osawa, Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 10, 3662–3669 (2008)

    Article  CAS  PubMed  Google Scholar 

  87. D.W. Yuan, Z.R. Liu, Atomic ensemble effects on formic acid oxidation on PdAu electrode studied by first-principles calculations. J. Power Sources 224, 241–249 (2013)

    Article  CAS  Google Scholar 

  88. J.K. Yoo, M. Cho, S. Yang, B. Shong, H.S. Chung, Y. Sohn, C.K. Rhee, Formic acid electrooxidation activity of Pt and Pt/Au catalysts: Effects of surface physical properties and irreversible adsorption of Bi. Electrochim. Acta 273, 307–317 (2018)

    Article  CAS  Google Scholar 

  89. M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 140, 363–378 (2008)

    Article  CAS  PubMed  Google Scholar 

  90. R.R. Adzic, D.N. Simic, A.R. Despic, D.M. Drazic, Electrocatalysis by foreign metal monolayers – Oxidation of formic-acid on platinum. J. Electroanal. Chem. 65, 587–601 (1975)

    Article  CAS  Google Scholar 

  91. R.R. Adzic, A.V. Tripkovic, N.M. Markovic, Structural effects in electrocatalysis – Oxidation of formic-acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms. J. Electroanal. Chem. 150, 79–88 (1983)

    Article  CAS  Google Scholar 

  92. Y.J. Kang, C.B. Murray, Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132, 7568–7569 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. N.M. Markovic, H.A. Gasteiger, P.N. Ross Jr., X. Jiang, I. Villegas, M.J. Weaver, Electrooxidation mechanisms of methanol and formic acid on Pt-Ru alloys surfaces. Electrochim. Acta 40, 91–98 (1995)

    Article  CAS  Google Scholar 

  94. Y.J. Kang, L. Qi, M. Li, R.E. Diaz, D. Su, R.R. Adzic, E. Stach, J. Li, C.B. Murray, Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation. ACS Nano 6(3), 2818–2825 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. L.L. Wang, D.D. Johnson, Electrocatalytic properties of PtBi and PtPb intermetallic line compounds via DFT: CO and H adsorption. J. Phys. Chem. C 112, 8266–8275 (2008)

    Article  CAS  Google Scholar 

  96. S. Trasatti, Electrocatalysis by oxides – Attempt at a unifying approach. J. Electroanal. Chem. 111, 125–131 (1980)

    Article  CAS  Google Scholar 

  97. B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis – Calculations and concepts. Adv. Catal. 45, 71–129 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adzic, R., Marinkovic, N. (2020). Important Electrocatalytic Reactions. In: Platinum Monolayer Electrocatalysts . Springer, Cham. https://doi.org/10.1007/978-3-030-49566-4_6

Download citation

Publish with us

Policies and ethics