Skip to main content

The Study of Fluid Inclusion Salinity in Minerals by Raman Spectroscopy Revisited

  • Conference paper
  • First Online:
Minerals: Structure, Properties, Methods of Investigation

Abstract

Raman spectroscopy is an efficient non-contact and non-destructive method and has been widely employed in many research fields, including fluid inclusion studies. The Raman spectra of OH vibrations can be used to determine the salinity of solutions and consequently the salinity of natural fluid inclusions in minerals. However, when analyzing a poorly resolved spectrum with a low signal-to-noise ratio, the problem of the ambiguity of its conventional deconvolution using peak fitting and the determination of weak changes in the parameters of its elementary components arises. The aim of the study was to develop and test the central moment (kurtosis) method for processing Raman spectra by the example of a series of quartz samples with fluid inclusions and to determine their salinity using the H2O vibrational modes avoiding the conventional peak fitting. The calibration curves for salinity determination were constructed using 26 model solutions of chemically pure NaCl with a mass fraction of 1 to 26%. To simulate the birefringence effect, a quartz plate was used to cover the cuvettes with solutions. A quantitative assessment of spectral shape variations was performed according to the values of their integral parameters (skewness and kurtosis). The regression coefficient for linear approximation of skewness and kurtosis based calibration curves was 0.97 and 0.98, respectively. The convergence with the microthermometric data for the two-phase fluid inclusions in quartz from a number of magnesite deposits of the Southern Ural was satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bodnar RJ. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. et Cosmochim. Acta. 1993;57:683–684. 10.1016/0016-7037(93)90378-A.

    Google Scholar 

  • Borisenko AS. Analiz solevogo sostava rastvorov gazovo-zhidkih vklyucheniy v mineralah metodom kriometrii. Ispolzovanie metodov termobarogeohimii pri poiskah i izuchenii rudnyih mestorozhdeniy. M. 1982: 37-47. [Borisenko AS. The analysis of the salt composition of solutions of gas-liquid inclusions in minerals by the cryometry method. The use thermobarogeochemistry methods in the search and study of ore deposits. M. 1982: 37–47 (In Russ)].

    Google Scholar 

  • Borisenko AS. Izuchenie solevogo sostava rastvorov gazovo-zhidkih vklyucheniy v mineralah metodom kriometrii. Geologiya i geofizika. 1977;8:16-27 [Borisenko AS. The study of the salt composition of solutions of gas-liquid inclusions in minerals by cryometry. Geology and Geophysics. 1977;8:16–27 (In Russ)].

    Google Scholar 

  • Bottrell SH, Yardley BWD, Buckley F. A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bulletin Minéralogie. 1988;111:279–290. https://doi.org/10.3406/bulmi.1988.8048.

  • Dubessy J, Lhomme T, Boiron MC, Rull F. Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: application to fluid inclusions. Appl. Spectrosc. 2002;56:99–106.

    Google Scholar 

  • Georgiev GM, Kalkanjiev TK, Petrov VP, Nickolov ZH. Determination of salts in water solutions by a skewing parameter of the water Raman band. Appl. Spectrosc. 1984;38:593–595. https://doi.org/10.1366/0003702844555106.

  • Kollias P, Rémillard J, Luke E, Szyrmer W. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing application. J. Geophys. Res.. 2011;116:D13201. https://doi.org/10.1029/2010jd015237.

  • Mernagh TP, Wilde AR. The use of laser Raman microprobe for the determination of salinity in fluid inclusions. Geochim. Cosmochim. Acta. 1989;53:765–771. https://doi.org/10.1016/0016-7037(89)90022-7.

  • Pankrushina EA, Kobuzov AS, Shchapova YV, Votyakov SL. Analysis of temperature-dependent Raman spectra of minerals: Statistical approaches. J. Raman Spectrosc. 2020:1–14. https://doi.org/10.1002/jrs.5825.

  • Press JWH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge Univ. Press, Cambridge 1993:49.

    Google Scholar 

  • Redder E. Fluid inclusions in minerals. M.: Mir. 1987;I:557.

    Google Scholar 

  • Robben L. On the autocorrelation method of external parameter depending data-sets. Crystal. Mater. 2017;232 (4):267–277. 10.1515/zkri-2016-2000.

    Google Scholar 

  • Salje EKH, Carpenter MA, Malcherek T, Boffa Ballaran T. Autocorrelation analysis of infrared spectra from minerals. Eur. J. Mineral. 2000;12 (3):503–519. https://doi.org/10.1127/0935-1221/2000/0012-0503.

  • Sun Q, Zhao L, Li N, Liu J. Raman spectroscopic study for the determination of Cl-concentration (molarity scale) in aqueous solutions: Application to fluid inclusions. Chemical Geology. 2010;4:55–61. https://doi.org/10.1016/j.chemgeo.2010.02.004.

Download references

Acknowledgements

The authors are grateful to N.V. Cherednichenko for helping prepare reference solutions and V.A. Volosatov for his help with technical preparation.

The reported study was carried out at the UB RAS “Geoanalitik” Center for Collective Use. Raman spectroscopy measurements were funded by RSF grant No. 16-17-10283; the statistical analysis was funded by RFBR, grant No. 19-35-90020; the microthermometric analysis was performed as part of topic No. AAAA-A18-118052590027-2 of the IGG UB RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta A. Pankrushina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pankrushina, E.A., Krupenin, M.T., Shchapova, Y.V., Kobuzov, A.S., Garaeva, A.A., Votyakov, S.L. (2020). The Study of Fluid Inclusion Salinity in Minerals by Raman Spectroscopy Revisited. In: Votyakov, S., Kiseleva, D., Grokhovsky, V., Shchapova, Y. (eds) Minerals: Structure, Properties, Methods of Investigation. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-49468-1_23

Download citation

Publish with us

Policies and ethics