Skip to main content

Electroencephalography and Childhood Trauma

  • Chapter
  • First Online:
Childhood Trauma in Mental Disorders

Abstract

This chapter focuses on the neurophysiological correlates of childhood trauma. The chapter is mainly structured in three parts. In the first part, a brief introduction on electroencephalographic techniques and analyses, i.e., spectral analyses, frontal asymmetry, coherence, event-related potentials (ERPs), and source analyses, is provided. In the second part, evidence on the neurophysiological correlates of childhood trauma is described, with each paragraph of this section focusing on one of the aforementioned types of analysis. In the third part, a comprehensive framework explaining the possible physiopathology underlying childhood trauma, starting from electroencephalographic alteration, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dube SR, Felitti VJ, Dong M, Giles WH, Anda RF. The impact of adverse childhood experiences on health problems: evidence from four birth cohorts dating back to 1900. Prev Med. 2003;37(3):268–77.

    PubMed  Google Scholar 

  2. Dube SR, Felitti VJ, Dong M, Chapman DP, Giles WH, Anda RF. Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics. 2003;111(3):564–72. https://doi.org/10.1542/peds.111.3.564.

    Article  PubMed  Google Scholar 

  3. Anda RF, Brown DW, Felitti VJ, Bremner JD, Dube SR, Giles WH. Adverse childhood experiences and prescribed psychotropic medications in adults. Am J Prev Med. 2007.

    Google Scholar 

  4. Brown DW, Anda RF, Tiemeier H, Felitti VJ, Edwards VJ, Croft JB, et al. Adverse childhood experiences and the risk of premature mortality. Am J Prev Med. 2009.

    Google Scholar 

  5. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci Nature Publishing Group. 2016;17(10):652–66. https://doi.org/10.1038/nrn.2016.111.

    Article  CAS  Google Scholar 

  6. Nunez PL, Srinivasan R. A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol. 2006;117(11):2424–35.

    Google Scholar 

  7. Tatum WO. Handbook of EEG interpretation. Medicine 2014.

    Google Scholar 

  8. Berger H. Ueber das Electroencephalogram des Menschen. Arch fuer Psychatrie 1929.

    Google Scholar 

  9. Arciniegas DB, Anderson CA, Filley CM, Garcia TA. Behavioral neurology & neuropsychiatry. Behav Neurol Neuropsych. 2010:1–700.

    Google Scholar 

  10. Dustman RE, Boswell RS, Porter PB. Beta brain waves as an index of alertness. Science (80). 1962;137(3529):533–4.

    Google Scholar 

  11. Maratos FA, Mogg K, Bradley BP, Rippon G, Senior C. Coarse threat images reveal theta oscillations in the amygdala: a magnetoencephalography study. Cogn Affect Behav Neurosci 2009.

    Google Scholar 

  12. Balconi M, Brambilla E, Falbo L. BIS/BAS, cortical oscillations and coherence in response to emotional cues. Brain Res Bull 2009.

    Google Scholar 

  13. Qin J, Lee TMC, Han S. Theta and alpha oscillations linked to risk identifications. Brain Res. 2009.

    Google Scholar 

  14. Garolera M, Coppola R, Muñoz KE, Elvevåg B, Carver FW, Weinberger DR, et al. Amygdala activation in affective priming: a magnetoencephalogram study. Neuroreport 2007.

    Google Scholar 

  15. Narayanan RT, Seidenbecher T, Sangha S, Stork O, Pape HC. Theta resynchronization during reconsolidation of remote contextual fear memory. Neuroreport. 2007.

    Google Scholar 

  16. Pape HC, Narayanan RT, Smid J, Stork O, Seidenbecher T. Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus. 2005.

    Google Scholar 

  17. Seidenbecher T, Laxmi TR, Stork O, Pape HC. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science (80). 2003.

    Google Scholar 

  18. Ebersole JS, Pacia S V. Localization of temporal lobe foci by ictal EEG patterns. Epilepsia. 1996.

    Google Scholar 

  19. Hughes JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav 2008.

    Google Scholar 

  20. Gold I. Does 40-Hz oscillation play a role in visual consciousness? Conscious Cogn. 1999.

    Google Scholar 

  21. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 1999.

    Google Scholar 

  22. Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science (80). 2001;291(5508):1560–3.

    CAS  Google Scholar 

  23. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci. 2002;5(8):805–11.

    CAS  PubMed  Google Scholar 

  24. Bauer EP, Paz R, Pare D. Gamma oscillations coordinate Amygdalo-Rhinal interactions during learning. J Neurosci. 2007;27(35):9369–79. https://doi.org/10.1523/JNEUROSCI.2153-07.2007.

  25. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32(1):209–24. https://doi.org/10.1146/annurev.neuro.051508.135603.

    Article  CAS  PubMed  Google Scholar 

  26. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. Science (80). 2007;316(5831):1609–12.

    CAS  Google Scholar 

  27. Masquelier T, Hugues E, Deco G, Thorpe SJ. Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. J Neurosci. 2009;29(43):13484–93. https://doi.org/10.1523/JNEUROSCI.2207-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davidson RJ. Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn Emot. 1993;7(1):115–38.

    Google Scholar 

  29. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. In: Social neuroscience: Key readings; 2013. p. 253–70.

    Google Scholar 

  30. Quirk GJ, Likhtik E, Pelletier JG, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci. 2003;23(25):8800–7.

    Google Scholar 

  31. Davidson R. What does the prefrontal cortex “do” in affect. Perspect Front EEG asymmetry Res. 2004;67(1–2):219–33.

    Google Scholar 

  32. Davidson RJ. Affective style and affective disorders: perspectives from affective neuroscience. Cogn Emot. 1998;12(3):307–30.

    Google Scholar 

  33. Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiatry. 2015:1050–60.

    Google Scholar 

  34. Jesulola E, Sharpley CF, Bitsika V, Agnew LL, Wilson P. Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: research findings and issues. Behav Brain Res. 2015:56–67.

    Google Scholar 

  35. Nusslock R, Miller GE. Early-life adversity and physical and emotional health across the lifespan: a neuroimmune network hypothesis. Biol Psychiatry. 2016:23–32.

    Google Scholar 

  36. Thibodeau R, Jorgensen RS, Kim S. Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J Abnorm Psychol. 2006:715–29.

    Google Scholar 

  37. Thatcher RW. Cyclic cortical reorganization during early childhood. Brain Cogn. 1992;20(1):24–50.

    CAS  PubMed  Google Scholar 

  38. Pogarell O, Teipel SJ, Juckel G, Gootjes L, Möller T, Bürger K, et al. EEG coherence reflects regional corpus callosum area in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2005;76(1):109–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thatcher RW, Krause PJ, Hrybyk M. Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol. 1986;64(2):123–43.

    CAS  PubMed  Google Scholar 

  40. Thatcher RW, North DM, Biver CJ. Development of cortical connections as measured by EEG coherence and phase delays. Hum Brain Mapp. 2008;29(12):1400–15.

    PubMed  Google Scholar 

  41. Blackwood DHR, Muir WJ. Cognitive brain potentials and their application. Br J Psychiatry. 1990:96–101.

    Google Scholar 

  42. Allison T, Puce A, Spencer DD, McCarthy G. Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex. 1999;9(5):415–30.

    CAS  PubMed  Google Scholar 

  43. Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA. Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp. 2002;15(2):95–111.

    PubMed  Google Scholar 

  44. Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. J Cogn Neurosci 1996.

    Google Scholar 

  45. Eimer M. Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clin Neurophysiol 2000.

    Google Scholar 

  46. Eimer M, Holmes A. An ERP study on the time course of emotional face processing. Neuroreport. 2002.

    Google Scholar 

  47. Ibanez A, Melloni M, Huepe D, Helgiu E, Rivera-Rei A, Canales-Johnson A, et al. What event-related potentials (ERPs) bring to social neuroscience? Soc Neurosci. 2012;7(6):632–49.

    PubMed  Google Scholar 

  48. Nieuwenhuis S, Yeung N, Van Den Wildenberg W, Ridderinkhof KR. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci. 2003;3(1):17–26.

    PubMed  Google Scholar 

  49. Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29:1201–13.

    Google Scholar 

  50. Wronka E, Walentowska W. Attention modulates emotional expression processing. Psychophysiology. 2011;48(8):1047–56.

    PubMed  Google Scholar 

  51. Donchin E, Karis D, Bashore TR. Cognitive psychophysiology and human information processing. Psychophysiol Syst Proces Appl. 1986;

    Google Scholar 

  52. de Haan M, Nelson CA. Brain activity differentiates face and object processing in 6-month-old infants. Dev Psychol. 1999;35(4):1113–21.

    PubMed  Google Scholar 

  53. McCleery JP, Akshoomoff N, Dobkins KR, Carver LJ. Atypical face versus object processing and hemispheric asymmetries in 10-month-old infants at risk for autism. Biol Psychiatry. 2009;66(10):950–7.

    PubMed  PubMed Central  Google Scholar 

  54. Halit H, Csibra G, Volein Á, Johnson MH. Face-sensitive cortical processing in early infancy. J Child Psychol Psychiatry Allied Discip. 2004;45(7):1228–34.

    Google Scholar 

  55. Halit H, De Haan M, Johnson MH. Cortical specialisation for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. NeuroImage. 2003;19(3):1180–93.

    CAS  PubMed  Google Scholar 

  56. Key APF, Stone W, Williams SM. What do infants see in faces? ERP evidence of different roles of eyes and mouth for face perception in 9-month-old infants. Infant Child Dev. 2009;18(2):149–62.

    PubMed  PubMed Central  Google Scholar 

  57. Scott LS, Shannon RW, Nelson CA. Neural correlates of human and monkey face processing in 9-month-old infants. Infancy. 2006;10(2):171–86.

    Google Scholar 

  58. Hajcak G, MacNamara A, Olvet DM. Event-related potentials, emotion, and emotion regulation: an integrative review. Dev Neuropsychol. 2010;35(2):129–55.

    PubMed  Google Scholar 

  59. Liu Y, Huang H, McGinnis-Deweese M, Keil A, Ding M. Neural substrate of the late positive potential in emotional processing. J Neurosci. 2012;32(42):14563–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sabatinelli D, Keil A, Frank DW, Lang PJ. Emotional perception: correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biol Psychol. 2013;92(3):513–9.

    PubMed  Google Scholar 

  61. Sabatinelli D, Lang PJ, Keil A, Bradley MM. Emotional perception: correlation of functional MRI and event-related potentials. Cereb Cortex. 2007;17(5):1085–91.

    PubMed  Google Scholar 

  62. García-Larrea L, Cézanne-Bert G. P3, positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalogr Clin Neurophysiol Evoked Potentials. 1998;108(3):260–73.

    PubMed  Google Scholar 

  63. Bates AT, Kiehl KA, Laurens KR, Liddle PF. Error-related negativity and correct response negativity in schizophrenia. Clin Neurophysiol. 2002.

    Google Scholar 

  64. Ford JM. Schizophrenia: the broken P300 and beyond. In: Psychophysiology; 1999.

    Google Scholar 

  65. Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM. Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 2002.

    Google Scholar 

  66. Pascual-Marqui RD. Low resolution brain electromagnetic tomography (LORETA). Electroencephalogr Clin Neurophysiol. 1997;1(103):25–6.

    Google Scholar 

  67. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low resolution electromagnetic tomography ( LORETA ): review, comparisons, and new validation brain new. Japanese J Clin Neurophysiol. 2002;30:81–94.

    Google Scholar 

  68. Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, et al. EEG and MEG data analysis in SPM8. Comput Intell Neurosci. 2011;2011

    Google Scholar 

  69. Howells FM, Stein DJ, Russell VA. Childhood trauma is associated with altered cortical arousal: insights from an EEG study. Front Integr Neurosci. 2012;6(December):1–19. http://journal.frontiersin.org/article/10.3389/fnint.2012.00120/abstract

    Google Scholar 

  70. Lee S-H, Park Y, Jin MJ, Lee YJ, Hahn SW. Childhood trauma associated with enhanced high frequency band powers and induced subjective inattention of adults. Front Behav Neurosci. 2017;11(August):1–12.

    Google Scholar 

  71. Ben-Amitay G, Kimchi N, Wolmer L, Toren P. Psychophysiological reactivity in child sexual abuse. J Child Sex Abus Routledge. 2016;25(2):185–200. https://doi.org/10.1080/10538712.2016.1124309.

  72. Alper K, Shah J, Howard B, Roy John E, Prichep LS. Childhood abuse and EEG source localization in crack cocaine dependence. Psychiatry Res. 2013;213(1):63–70. https://doi.org/10.1016/j.pscychresns.2013.01.008.

  73. Jin MJ, Kim JS, Kim S, Hyun MH, Lee SH. An integrated model of emotional problems, beta power of electroencephalography, and low frequency of heart rate variability after childhood trauma in a non-clinical sample: a path analysis study. Front Psych. 2018;8.

    Google Scholar 

  74. Curtis WJ, Cicchetti D. Emotion and resilience: a multilevel investigation of hemispheric electroencephalogram asymmetry and emotion regulation in maltreated and nonmaltreated children. Dev Psychopathol. 2007;19(3):811–40.

    PubMed  Google Scholar 

  75. Miskovic V, Schmidt LA, Georgiades K, Boyle M, MacMillan HL. Stability of resting frontal electroencephalogram (EEG) asymmetry and cardiac vagal tone in adolescent females exposed to child maltreatment. Dev Psychobiol. 2009;51(6):474–87.

    PubMed  Google Scholar 

  76. Tang A, Miskovic V, Lahat A, Tanaka M, MacMillan H, Van Lieshout RJ, et al. Trajectories of resting frontal brain activity and psychopathology in female adolescents exposed to child maltreatment. Dev Psychobiol. 2018;60(1):67–77.

    PubMed  Google Scholar 

  77. Hostinar CE, Davidson RJ, Graham EK, Mroczek DK, Lachman ME, Seeman TE, et al. Frontal brain asymmetry, childhood maltreatment, and low-grade inflammation at midlife. Psychoneuroendocrinology. 2017;75:152–63.

    PubMed  Google Scholar 

  78. Popkirov S, Flasbeck V, Schlegel U, Juckel G, Brüne M. Childhood trauma and dissociative symptoms predict frontal EEG asymmetry in borderline personality disorder. J Trauma Dissociation Routledge. 2018;00(00):1–16. https://doi.org/10.1080/15299732.2018.1451808.

    Article  Google Scholar 

  79. Ito Y, Teicher MH, Glod CA, Ackerman E. Preliminary evidence for aberrant cortical} development in abused Children. A quantitative EEG study. J Neuropsychiatry Clin Neurosci. 1998;10(3):298–307.

    Google Scholar 

  80. Miskovic V, Schmidt LA, Georgiades K, Boyle M, Macmillan HL. Adolescent females exposed to child maltreatment exhibit atypical EEG coherence and psychiatric impairment: linking early adversity, the brain, and psychopathology. Dev Psychopathol. 2010;22(2):419–32.

    PubMed  Google Scholar 

  81. Chu DA, Bryant RA, Gatt JM, AWF Harris. Failure to differentiate between threat-related and positive emotion cues in healthy adults with childhood interpersonal or adult trauma. J. Psychiatr. Res. 2016;78: 31–41. https://doi.org/ 10.1016/j.jpsychires.2016.03.006.

  82. Cicchetti D, Curtis WJ. An event-related potential study of the processing of affective facial expressions in young children who experienced maltreatment during the first year of life. Dev Psychopathol. 2005;17:641–77.

    Google Scholar 

  83. Curtis WJ, Cicchetti D. Affective facial expression processing in young children who have experienced maltreatment during the first year of life: an event-related potential study. Dev Psychopathol. 2011;23(2):373–95.

    PubMed  Google Scholar 

  84. Pollak SD, Cicchetti D, Klorman R, Brumaghim JT. Cognitive brain event-related potentials and emotion processing in maltreated children. Child Dev. 1997;68(5):773–87.

    PubMed  Google Scholar 

  85. Pollak SD, Klorman R, Thatcher JE, Cicchetti D. P3b reflects maltreated children’s reactions to facial displays of emotion. Psychophysiology HAM-TMC Library. 2001;38(2):267–74.

    CAS  Google Scholar 

  86. Shackman JE, Shackman AJ, Pollak SD. Physical abuse amplifies attention to threat and increases anxiety in children. Emotion. 2007;7(4):838–52.

    PubMed  Google Scholar 

  87. Flasbeck V, Enzi B, Brüne M. Childhood trauma affects processing of social interactions in borderline personality disorder: an event-related potential study investigating empathy for pain. World J Biol Psychiatry. 2017:1–11. https://doi.org/10.1080/15622975.2017.1333147.

  88. Kim S, Kim JS, Jin MJ, Im CH, Lee SH. Dysfunctional frontal lobe activity during inhibitory tasks in individuals with childhood trauma: an event-related potential study. NeuroImage Clin. 2018;17:935–42.

    PubMed  Google Scholar 

  89. Pechtel P, Pizzagalli DA. Disrupted reinforcement learning and maladaptive behavior in women with a history of childhood sexual abuse: a high-density event-related potential study. JAMA Psychiat. 2013;70(5):499–507.

    Google Scholar 

  90. Kim S, Kim JS, Shim M, Im CH, Lee SH. Altered cortical functional network during behavioral inhibition in individuals with childhood trauma. Sci Rep. 2018;8(1):1–10.

    Google Scholar 

  91. Trentini C, Pagani M, Fania P, Speranza AM, Nicolais G, Sibilia A, et al. Neural processing of emotions in traumatized children treated with eye movement desensitization and reprocessing therapy: a hdEEG study. Front Psychol. 2015;6(NOV):1–12.

    Google Scholar 

  92. Tomoda A, Navalta CP, Polcari A, Sadato N, Teicher MH. Childhood sexual abuse is associated with reduced Gray matter volume in visual cortex of young women. Biol Psychiatry. 2009;66(7):642–8.

    PubMed  PubMed Central  Google Scholar 

  93. Tomoda A, Polcari A, Anderson CM, Teicher MH. Reduced visual cortex Gray matter volume and thickness in young adults who witnessed domestic violence during childhood. PLoS One. 2012;7(12)

    Google Scholar 

  94. Teicher MH, Samson JA. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry Allied Discip. 2016:241–66.

    Google Scholar 

  95. Öhman A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology. 2005:953–8.

    Google Scholar 

  96. Suslow T, Ohrmann P, Bauer J, Rauch AV, Schwindt W, Arolt V, et al. Amygdala activation during masked presentation of emotional faces predicts conscious detection of threat-related faces. Brain Cogn. 2006;61(3):243–8.

    PubMed  Google Scholar 

  97. Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH. Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav. 2013;7(2):196–203.

    PubMed  Google Scholar 

  98. Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D, et al. Early life stress and Morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry. 2006;59(10):975–82.

    PubMed  Google Scholar 

  99. Thomaes K, Dorrepaal E, Draijer N, De Ruiter MB, Van Balkom AJ, Smit JH, et al. Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry. 2010;71(12):1636–44.

    PubMed  Google Scholar 

  100. Hanson JL, Chung MK, Avants BB, Shirtcliff EA, Gee JC, Davidson RJ, et al. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based Morphometry investigation of brain structure and behavioral risk. J Neurosci. 2010;30(22):7466–72. https://doi.org/10.1523/JNEUROSCI.0859-10.2010.

  101. Carballedo A, Lisiecka D, Fagan A, Saleh K, Ferguson Y, Connolly G, et al. Early life adversity is associated with brain changes in subjects at family risk for depression. World J Biol Psychiatry. 2012;13(8):569–78.

    PubMed  Google Scholar 

  102. Benedetti F, Bollettini I, Radaelli D, Poletti S, Locatelli C, Falini A, et al. Adverse childhood experiences influence white matter microstructure in patients with bipolar disorder. Psychol Med. 2014;44(14):3069–82.

    CAS  PubMed  Google Scholar 

  103. Eimer M. The face-sensitive N170 component of the event-related brain potential. In: Oxford handbook of face perception; 2012.

    Google Scholar 

  104. Schupp HT, Junghöfer M, Weike AI, Hamm AO. The selective processing of briefly presented affective pictures: an ERP analysis. Psychophysiology. 2004;41(3):441–9.

    PubMed  Google Scholar 

  105. Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev. 2001:146–60.

    Google Scholar 

  106. Richardson MP, Strange BA, Dolan RJ. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci. 2004;7(3):278–85.

    CAS  PubMed  Google Scholar 

  107. Godsil BP, Kiss JP, Spedding M, Jay TM. The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol. 2013;23(10):1165–81.

    CAS  PubMed  Google Scholar 

  108. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying ne. Am J Psychiatry. 2014:829–43.

    Google Scholar 

  109. Cromheeke S, Herpoel LA, Mueller SC. Childhood abuse is related to working memory impairment for positive emotion in female university students. Child Maltreat. 2014;19(1):38–48.

    PubMed  Google Scholar 

  110. Lim M, Lee S, Park JI. Differences between impulsive and non-impulsive suicide attempts among individuals treated in emergency rooms of South Korea. Psychiatry Investig. 2016;13(4):389–96.

    PubMed  PubMed Central  Google Scholar 

  111. Weiss NH, Tull MT, Lavender J, Gratz KL. Role of emotion dysregulation in the relationship between childhood abuse and probable PTSD in a sample of substance abusers. Child Abuse Negl. 2013;37(11):944–54. https://www-sciencedirect-com.e.bibl.liu.se/science/article/pii/S0145213413000860?via%3Dihub

    PubMed  Google Scholar 

  112. Vuilleumier P, Armony JL, Driver J, Dolan RJ. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat Neurosci. 2003;6(6):624–31.

    CAS  PubMed  Google Scholar 

  113. Pourtois G, de Gelder B, Bol A, Crommelinck M. Perception of facial expressions and voices and of their combination in the human brain. Cortex. 2005;41(1):49–59.

    PubMed  Google Scholar 

  114. Cooper NR, Burgess AP, Croft RJ, Gruzelier JH. Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport. 2006;17(2):205–8.

    PubMed  Google Scholar 

  115. Uusberg A, Uibo H, Kreegipuu K, Allik J. EEG alpha and cortical inhibition in affective attention. Int J Psychophysiol. 2013;89(1):26–36.

    PubMed  Google Scholar 

  116. Ray WJ, Cole HW. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science (80). 1985;228(4700):750–2.

    CAS  Google Scholar 

  117. Steriade M, Gloor P, Llinás RR. Lopes da Silva FH, Mesulam MM. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol. 1990;76(6):481–508.

    CAS  PubMed  Google Scholar 

  118. Miller R. Cortico-hippocampal interplay: self-organizing phase-locked loops for indexing memory. Psychobiology 1989.

    Google Scholar 

  119. Fetterman AK, Ode S, Robinson MD. For which side the bell tolls: the laterality of approach-avoidance associative networks. Motiv Emot. 2013;37(1):33–8.

    PubMed  Google Scholar 

  120. De Bellis MD, Keshavan MS, Shifflett H, Iyengar S, Beers SR, Hall J, et al. Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol Psychiatry. 2002;52(11):1066–78.

    PubMed  Google Scholar 

  121. Andersen SL, Tomada A, Vincow ES, Valente E, Polcari A, Teicher MH. Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. J Neuropsychiatry Clin Neurosci. 2008;20(3):292–301.https://doi.org/10.1176/jnp.2008.20.3.292.

  122. Mehta MA, Gore-Langton E, Golembo N, Colvert E, Williams SCR, Sonuga-Barke E. Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life. J Cogn Neurosci. 2010;22(10):2316–25.

    PubMed  Google Scholar 

  123. Teicher MH, Dumont NL, Ito Y, Vaituzis C, Giedd JN, Andersen SL. Childhood neglect is associated with reduced corpus callosum area. Biol Psychiatry. 2004;56(2):80–5.

    PubMed  Google Scholar 

  124. Teicher MH, Samson JA, Sheu YS, Polcari A, McGreenery CE. Hurtful words: association of exposure to peer verbal abuse with elevated psychiatric symptom scores and corpus callosum abnormalities. Am J Psychiatry. 2010;167(12):1464–71.

    PubMed  PubMed Central  Google Scholar 

  125. Zatti C, Rosa V, Barros A, Valdivia L, Calegaro VC, Freitas LH, et al. Childhood trauma and suicide attempt: a meta-analysis of longitudinal studies from the last decade. Psychiatry Res. 2017:353–8.

    Google Scholar 

  126. Edalati H, Krank MD. Childhood maltreatment and development of substance use disorders: a review and a model of cognitive pathways. Trauma, Violence, Abus. 2016;17(5):454–67.

    Google Scholar 

  127. Sugaya L, Hasin DS, Olfson M, Lin KH, Grant BF, Blanco C. Child physical abuse and adult mental health: a national study. J Trauma Stress. 2012;25(4):384–92.

    PubMed  PubMed Central  Google Scholar 

  128. Lysaker PH, Meyer P, Evans JD, Marks KA. Neurocognitive and symptom correlates of self-reported childhood sexual abuse in schizophrenia spectrum disorders. Ann Clin Psychiatry. 2001;13(2):89–92.

    CAS  PubMed  Google Scholar 

  129. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Simonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simonetti, A. (2020). Electroencephalography and Childhood Trauma. In: Spalletta, G., Janiri, D., Piras, F., Sani, G. (eds) Childhood Trauma in Mental Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-49414-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49414-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49413-1

  • Online ISBN: 978-3-030-49414-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics