Skip to main content

Neuroimaging and Cognition of Early Traumatic Experiences

  • Chapter
  • First Online:
Childhood Trauma in Mental Disorders

Abstract

In the last decades, the effects of traumatic experiences on brain development have been extensively studied, especially because early adversities in the life of a child have been shown to have detrimental effects on mental health. Indeed, childhood maltreatments produce a cascade of physiological, neurochemical, and hormonal changes, which can also lead to enduring alterations in brain structure and function. Therefore, in this chapter we aim to: (a) describe how the human brain develops and the biological mechanisms underpinning stress response, (b) provide an overview of the existing evidence exploring the association between child maltreatment and cognitive or neuroimaging abnormalities, (c) explain how type and time of trauma, gender differences, and sensitive periods of different brain structures can influence structural and functional changes in subjects with traumatic history, and d) discuss the recent functional magnetic resonance imaging (fMRI) studies that support the theory of latent vulnerability. Finally, this chapter has the final goal of highlighting the importance of pursuing a much more explicit preventative psychiatric approach in helping those children exposed to maltreatment before they present with a frank psychiatric disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pechtel P, Pizzagalli D. Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacol. 2011;214:55–70.

    CAS  Google Scholar 

  2. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003;27:33–44.

    PubMed  Google Scholar 

  3. McCrory EJ, De Brito SA, Viding E. Research review: the neurobiology and genetics of maltreatment and adversity. J Child Psychol Psychiatry. 2010;51:1079–95.

    PubMed  Google Scholar 

  4. Bremner JD, Vermetten E. Stress and development: behavioral and biological consequences. Dev Psychopathol. 2001;13:473–89.

    Google Scholar 

  5. Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry. 2003;54:693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McCrory EJ, Viding E. The theory of latent vulnerability: reconceptualizing the link between childhood maltreatment and psychiatric disorder. Dev Psychopathol. 2015;27:493–505.

    PubMed  Google Scholar 

  7. Teicher MH, Samson JA. Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry. 2013;170:1114–33.

    PubMed  PubMed Central  Google Scholar 

  8. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.

    PubMed  PubMed Central  Google Scholar 

  9. Bystron L, Blakemore C, Rakic P. Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci. 2008;9:110–22.

    CAS  PubMed  Google Scholar 

  10. Pakkenberg B, Gundersen HJ. Neocortical neuron number in humans: effects of sex and age. J Comp Neurol. 1997;384:312–20.

    CAS  PubMed  Google Scholar 

  11. Stiles J. The fundamentals of brain development: integrating nature and nurture. Cambridge, MA: Harvard University Press; 2008.

    Google Scholar 

  12. Von Melchner L, Pallas SL. Visual behavior mediated by retinal projections directed by auditory pathway. Nature. 2000;404:871–6.

    Google Scholar 

  13. Greenough WT, Black JE, Wallace CS. Experience and brain development. Child Dev. 1987;58:539–59.

    CAS  PubMed  Google Scholar 

  14. Black JE, Sirevaag AM, Greenough WT. Complex experience promotes capillary formation in young rat visual cortex. Neurosci Lett. 1987;83:351–5.

    CAS  PubMed  Google Scholar 

  15. Hubel DH, Wiesel TN. Ferrier lectures: functional architecture of macaque monkey visual cortex. Proc Royal Soc Lond Ser B. 1977;198:1–59.

    CAS  Google Scholar 

  16. Widom CS. Posttraumatic stress disorder in abused and neglected children grown up. Am J Psychiatry. 1999;156:1223–9.

    CAS  PubMed  Google Scholar 

  17. Widom CS, DuMont K, Czaja SJ. A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry. 2007;64:49–56.

    PubMed  Google Scholar 

  18. Copeland W, Keeler G, Angold A, Costello E. Traumatic events and posttraumatic stress in childhood. Arch Gen Psychiatry. 2007;64:577–84.

    PubMed  Google Scholar 

  19. Ford JD, Stockton P, Kaltman S, Green BL. Disorders of extreme stress (DESNOS) symptoms are associated with type and severity of interpersonal trauma exposure in a sample of healthy Young women. J Interpers Violence. 2006;21:1399–416.

    PubMed  Google Scholar 

  20. Chrousos GP, Gold PW. The concepts of stress system disorders: overview of physical an behavioral homeostasis. JAMA. 1992;267:1244–52.

    CAS  PubMed  Google Scholar 

  21. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.

    PubMed  Google Scholar 

  22. Simantov R, Blinder E, Ratovitski T, Tauber M, Gabbay M, Porat S. Dopamine induced apoptosis in human neuronal cells: inhibition by nucleic acid antisense to the dopamine transporter. Neurosci. 1996;74:39–50.

    CAS  Google Scholar 

  23. Dunlop SA, Archer MA, Quinlivan JA, Beazley LD, Newnham JP. Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J Matern Fetal Med. 1997;6:309–13.

    CAS  PubMed  Google Scholar 

  24. Todd RD. Neural development is regulated by classical neuro-transmitters: dopamine D2 receptor stimulation enhances neurite outgrowth. Biol Psychiatry. 1992;31:794–807.

    CAS  PubMed  Google Scholar 

  25. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci. 1997;17:2492–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pizarro JM, Lumley LA, Medina W, Robison CL, Changa WE, Alagappa A, et al. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res. 2004;1025:10–20.

    CAS  PubMed  Google Scholar 

  27. Gunnar M, Quevedo K. The neurobiology of stress and development. Annu Rev Psychol. 2007;58:145–73.

    PubMed  Google Scholar 

  28. De Bellis M, Abigail Zisk AB. The biological effects of childhood trauma. Child Adolesc Psychiatr Clin N Am. 2014;23:185–222.

    PubMed  PubMed Central  Google Scholar 

  29. Yehuda R, Golier JA, Tischler L, Harvey PD, Newmark R, Yang RK, et al. Hippocampal volume in aging combat veterans with and without post-traumatic stress disorder: relation to risk and resilience factors. J Psychiatr Res. 2007;41:435–45.

    PubMed  Google Scholar 

  30. Malarbi S, Abu Rayya HM, Muscara F, Stargatt R. Neuropsychological functioning of childhood trauma and post-traumatic stress disorder: a meta-analysis. Neurosci Biobehav Rev. 2017;72:68–86.

    CAS  PubMed  Google Scholar 

  31. Wilker S, Pfeiffer A, Kolassa S, Koslowski D, Elbert T, Kolassa IT. How to quantify exposure to traumatic stress? Reliability and predictive validity of measures for cumulative trauma exposure in a post- conflict population. Eur J Psychotraumatol. 2015;6:1–10.

    Google Scholar 

  32. Frewen P, Brown M, DePierro J, D’Andrea W, Schore A. Assessing the family dynamics of childhood maltreatment history with the childhood attachment and relational trauma screen (CARTS). Eur J Psychotraumatol. 2015;6:27792.

    PubMed  Google Scholar 

  33. Cloitre M, Stolbach BC, Herman JL, van der Kolk B, Pynoos R, Wang J, et al. A developmental approach to complex PTSD: childhood and adult cumulative trauma as predictors of symptom complexity. J Trauma Stress. 2009;22:399–408.

    PubMed  Google Scholar 

  34. Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Post-traumatic stress disorder. Nat Rev Dis Primers. 2015;1:1–22.

    Google Scholar 

  35. Danese A, Moffit TE, Arseneault L, Bleiberg BA, Dinardo PB, Gandelman SB, et al. The origins of cognitive deficits in victimized children: implications for neuroscientists and clinicians. Am J Psychiatry. 2017;174:349–61.

    PubMed  Google Scholar 

  36. Schore AN. Dysregulation of the right brain: a fundamental mechanism of traumatic attachment and the psychopathogenesis of posttraumatic stress disorder. Aust N Z J Psychiatry. 2002;36:9–30.

    PubMed  Google Scholar 

  37. Casey JE. A model to guide the conceptualization, assessment and diagnosis of nonverbal learning disorder. Can J School Psychol. 2012;27:35–57.

    Google Scholar 

  38. Sullivan RM, Gratton A. Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology. 2002;27:99–114.

    CAS  PubMed  Google Scholar 

  39. Schore AN. Attachment and the regulation of the right brain. Attachment Hum Dev. 2000;2:23–47.

    CAS  Google Scholar 

  40. Teicher MH, Tomoda A, Andersen SL. Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Ann N Y Acad Sci. 2006;1071:313–23.

    PubMed  Google Scholar 

  41. Giedd JN, Lalonde FM, Celano MJ, White SL, Wallace GL, Lee NR, et al. Anatomical brain magnetic resonance imaging of typically developing children. J Am Acad Child Adolesc Psychiatry. 2009;48:465–70.

    PubMed  PubMed Central  Google Scholar 

  42. Lenroot RK, Giedd JN. Sex differences in the adolescent brain. Brain Cogn. 2010;72:46–55.

    PubMed  Google Scholar 

  43. Anderson CM, Teicher MH, Polcari A, Renshw PF. Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: potential role of the vermis in stress-enhanced risk for drug abuse. Psychoneuroendocrinology. 2002;27:231–44.

    PubMed  Google Scholar 

  44. Teicher MH, Sl A, Dumont NL, Ito Y, Glod CA, Vaituzis C, et al. Childhood neglect attenuates development of the corpus callosum. Soc Neurosci Abstr. 2000;26:549.

    Google Scholar 

  45. Sapolsky RM. Stress, glucocorticoids and damage to the nervous system: the current state of confusion. Stress. 1996;1:1–19.

    CAS  PubMed  Google Scholar 

  46. McEwen BS, Gianaros PJ. Central role in the brain in stress and adaptation: links to socioeconomic status, health and disease. Ann N Y Acad Sci. 2010;1186:190–222.

    PubMed  PubMed Central  Google Scholar 

  47. Teicher MH, Samson JA. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry. 2016;57:241–66.

    PubMed  PubMed Central  Google Scholar 

  48. Rinne-Albers MA, van der Wee NJ, Lamers-Winkelman F, Vermeiren RR. Neuroimaging in children, adolescent and young adults with psychological trauma. Eur Chil Adolesc Psychiatry. 2013;22:745–55.

    Google Scholar 

  49. Smith M. Bilateral hippocampal volume reduction in adults with post traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus. 2005;15:798–807.

    PubMed  Google Scholar 

  50. Andersen SL, Teicher MH. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology. 2004;29:1988–93.

    PubMed  Google Scholar 

  51. Andersen SL, Teicher MH. Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci. 2008;31:183–91.

    CAS  PubMed  Google Scholar 

  52. Pechtel P, Lyons-Ruth K, Anderson CM, Teicher MH. Sensitive periods of amygdala development: the role of maltreatment in preadolescence. NeuroImage. 2014;97:236–44.

    PubMed  PubMed Central  Google Scholar 

  53. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci. 2002;5:1242–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. LeDoux JE. Emotional memory systems in the brain. Behav Brain Res. 1993;58:69–79.

    CAS  PubMed  Google Scholar 

  55. Derntl B, Habel U, Windischberber C, Robinson S, Kryspin-Exner I, Gur RC, et al. General and specific responsiveness of the amygdala during explicit emotion recognition in females and males. BMC Neurosci. 2009;10:91.

    PubMed  PubMed Central  Google Scholar 

  56. Sarrieau A, Dussaillant M, Agid F, Philibert D, Agid Y, Rostene W. Autoradiographic localization of glucocorticosteroid and progesterone binding sites in the human post-mortem brain. J Steroid Biochem. 1986;25:717–21.

    CAS  PubMed  Google Scholar 

  57. Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, et al. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS One. 2012;7(10):e46970.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A. 2005;102:9371–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SC, et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian adoptees study pilot. J Child Psychol Psychiatry. 2009;50:943–51.

    PubMed  Google Scholar 

  60. Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci. 2010;13:46–61.

    PubMed  PubMed Central  Google Scholar 

  61. Lupien SJ, Parent S, Evans AC, Tremblay RE, Zelazo PD, Corbo V, et al. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci U S A. 2011;108:14324–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Driessen M, Herrmann J, Stahl K, Zwaan M, Meier S, Hill A, et al. Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Arch Gen Psychiatry. 2000;57:1115–22.

    CAS  PubMed  Google Scholar 

  63. Schmahl CG, Vermetten E, Elzinga BM, Douglas BJ. Magnetic resonance imaging of hippocampal and amygdala volume in women with childhood abuse and borderline personality disorder. Psychiatry Res. 2003;122:193–8.

    PubMed  Google Scholar 

  64. Vermetten E, Schmahl C, Lindner S, Loewenstein RJ, Bremner JD. Hippocampal and amygdalar volumes in dissociative identity disorder. Am J Psychiatry. 2006;163:630–6.

    PubMed  PubMed Central  Google Scholar 

  65. Kuo JR, Kaloupek DG, Woodward SH. Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder: a cross-sectional study. Arch Gen Psychiatry. 2012;69:1080–6.

    PubMed  Google Scholar 

  66. Whittle S, Dennison M, Vijayakumar N, Simmons JG, Yucel M, Lubman DI, et al. Childhood maltreatment and psychopathology affect brain development during adolescence. J Am Acad Child Adolesc Psychiatry. 2013;52:940–52.

    PubMed  Google Scholar 

  67. Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31:373–85.

    PubMed  Google Scholar 

  68. Carballedo A, Morris D, Zill P, Fahey C, Reinhold E, Meisenzahl E, et al. Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. Neuropsychiatr Genet. 2013;162B:183–90.

    Google Scholar 

  69. De Bellis MD, Keshavan MS, Clark DB, Casey BJ, Giedd JN, Boring AM, et al. Developmental traumatology. Part II: Brain Development Biol Psychiatry. 1999;45:1271–84.

    PubMed  Google Scholar 

  70. De Bellis MD, Keshavan MS, Shifflett H, Iyengar S, Beers SR, Hall J, et al. Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol Psychiatry. 2002;52:1066–78.

    PubMed  Google Scholar 

  71. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38.

    PubMed  Google Scholar 

  72. Edmiston EE, Wang F, Mazure CM, Guiney J, Sinha R, Mayes LC, et al. Corticostriatal-lymbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Arch Pediatr Adolesc Med. 2011;165:1069–77.

    PubMed  PubMed Central  Google Scholar 

  73. Daniels JK, Lamke JP, Gaebler M, Walter H, Scheel M. White matter integrity and its relationship to PTSD and childhood trauma: a systematic review and meta-analysis. Depress Anxiety. 2013;30(3):207–16.

    PubMed  Google Scholar 

  74. Choi J, Jeong B, Rohan ML, Polcari AM, Teicher MH. Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biol Psychiatry. 2009;65:227–34.

    PubMed  Google Scholar 

  75. Tomoda A, Sheu YS, Rabi K, Suzuki H, Navalta CP, Polcari A, et al. Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. NeuroImage. 2011;54(Suppl 1):S280–6.

    PubMed  Google Scholar 

  76. Choi J, Jeong B, Polcari AM, Rohan ML, Teicher MH. Reduced fractional anisotropy in the visual limbic pathway of young adults witnessing domestic violence in childhood. NeuroImage. 2012;59:1071–9.

    PubMed  Google Scholar 

  77. Tomoda A, Polcari A, Anderson CM, Teicher MH. Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood. PLoS One. 2012;7(12):e52528.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Heim CM, Mayberg HS, Mletzko T, Nemeroff CB, Pruessner JC. Decreased cortical representation of genital somatosensory field after childhood sexual abuse. Am J Psychiatry. 2013;170:616–23.

    PubMed  Google Scholar 

  79. De Bellis MD, Keshavan MS. Sex differences in brain maturation in maltreatment-related pediatric posttraumatic stress disorder. Neurosci Biobehav Rev. 2003;27:103–17.

    PubMed  Google Scholar 

  80. Teicher MH, Dumont NL, Ito Y, Vaituzis C, Giedd JN, Andersen SL. Childhood neglect is associated with reduced corpus callosum area. Biol Psychiatry. 2004;56:80–5.

    PubMed  Google Scholar 

  81. Juraska JM, Kopcik JR. Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Res. 1988;450:1–8.

    CAS  PubMed  Google Scholar 

  82. Teicher MH, Parigger A. The “Maltreatment and Abuse Chronology of Exposure” (MACE) scale for the retrospective assessment of abuse and neglect during development. PLoS One. 2015;10(2):e0117423.

    PubMed  PubMed Central  Google Scholar 

  83. Jackowski AP, Douglas Palumberi H, Jackowski M, Win L, Schutz RT, Staib LW, et al. Corpus callosum in maltreated children with posttraumatic stress disorder: a diffusion tensor imaging study. Psychiatry Res. 2008;15:256–61.

    Google Scholar 

  84. Galinowski A, Miranda R, Lemaitre H, Paillere Martinot ML, Artiges E, Vulser H, et al. Resilience and corpus callosum microstructure in adolescence. Psychol Med. 2015;45:2285–94.

    CAS  PubMed  Google Scholar 

  85. Eluvathingal TJ, Chugani HT, Behen ME, Juhasz C, Muzik O, Maqbool M, et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics. 2006;117:2093–100.

    PubMed  Google Scholar 

  86. Govindan RM, Behen ME, Helder E, Makki MI, Chugani HT. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS). Cereb Cortex. 2010;20:561–9.

    PubMed  Google Scholar 

  87. Huang H, Gundapuneedi T, Rao U. White matter disruptions in adolescents exposed to childhood maltreatment and vulnerability to psychopathology. Neuropsychopharmacology. 2012;37:2693–701.

    PubMed  PubMed Central  Google Scholar 

  88. Benedetti F, Bollettini I, Redaelli D, Poletti S, Locatelli C, Falini A. Adverse childhood experiences influence white matter microstructure in patients with bipolar disorder. Psychol Med. 2014;44:3069–82.

    CAS  PubMed  Google Scholar 

  89. Sanchez MM, Young LJ, Plotsky PM, Insel TR. Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci. 2000;20:4657–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Walton RM. Postnatal neurogenesis: of mice, men and macaques. Vet Pathol. 2012;49:155–65.

    CAS  PubMed  Google Scholar 

  91. Baldacara L, Jackowski AP, Schoedl A, Pupo M, Andreoli SB, Mello MF, et al. Reduced cerebellar left hemisphere and vermal volume in adults with PTSD from a community sample. J Psichiatry Res. 2011;45:1627–33.

    Google Scholar 

  92. Carrion VG, Weems CF, Eliez S, Patwardhan A, Brown W, Ray RD, et al. Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biol Psychiatry. 2001;50:943–51.

    CAS  PubMed  Google Scholar 

  93. Hanson JL, Chung MK, Avants BB, Shirtcliff EA, Gee JC, Davidson RJ, et al. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioural risk. J Neurosci. 2010;30:7466–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Walsh ND, Dalgleish T, Lombardo MV, Dunn VJ, Van Harmelen AL, Ban M, et al. General and specific effects of early-life psychosocial adversities on adolescent grey matter volume. Neuroimage Clin. 2014;4:308–18.

    PubMed  PubMed Central  Google Scholar 

  95. Bauer PM, Hanson JL, Pierson RK, Davidson RJ, Pollak SD. Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biol Psychiatry. 2009;66:1100–6.

    PubMed  PubMed Central  Google Scholar 

  96. De Bellis MD, Kuchibhatla M. Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol Psychiatry. 2006;60:697–703.

    PubMed  Google Scholar 

  97. Shin LM, Liberzon I. The neurocircuitry of fear, stress and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.

    PubMed  Google Scholar 

  98. Phelps EA, LeDoux JE. Contributions of amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–87.

    CAS  PubMed  Google Scholar 

  99. Whalen PJ, Rauch SL, Etcoff NL, Mclnerney SC, Lee MB, Jenike MA. Masked presentation of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci. 1998;18:411–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pessoa L, Adolphs R. Emotion processing and the amygdala: from a “low road” to “many roads” of evaluating biological significance. Nat Rev Neurosci. 2010;11:773–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rogosch FA, Dackis MN, Cicchetti D. Child mal treatment and allostatic load: consequences for physical and mental health in children from low-income families. Dev Psychopathol. 2011;23:1107–24.

    PubMed  PubMed Central  Google Scholar 

  102. Suslow T, Ohrmann P, Bauer J, Rauch AV, Schwindt W, Arolt V, et al. Amygdala activation during masked presentation of emotional faces predicts conscious detection of threat-related faces. Brain Cogn. 2006;61:243–8.

    PubMed  Google Scholar 

  103. Goff B, Gee DG, Telzer EH, Humphreys KL, Gabard-Durnam L, Flannery J, et al. Reduced nucleus accumbens reactivity and adolescent depression following early-life stress. Neurosci. 2013;249:129–38.

    CAS  Google Scholar 

  104. Maheu FS, Dozier M, Guyer AE, Mandell D, Peloso E, Poeth K, et al. A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect. Cogn Affect Behav Neurosci. 2010;10:34–49.

    PubMed  PubMed Central  Google Scholar 

  105. Tottenham N, Hare TA, Millner A, Gilhooly T, Zevin JD, Casey BJ. Elevated amygdala response to faces following early deprivation. Dev Sci. 2011;14:190–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McCrory EJ, De Brito SA, Sebastian CL, Mechelli A, Bird G, Kelly PA, et al. Heightened neural reactivity to threat in child victims of family violence. Curr Biol. 2011;21:947–8.

    Google Scholar 

  107. McCrory EJ, De Brito SA, Kelly PA, Bird G, Sebastian CL, Mechelli A, et al. Amygdala activation in maltreated children during pre-attentive emotional processing. Br J Psychiatry. 2013;202:269–76.

    PubMed  Google Scholar 

  108. White MG, Bogdan R, Fisher PM, Munoz KE, Williamson DE, Hariri AR. FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav. 2012;11:869–78.

    CAS  PubMed  Google Scholar 

  109. Swartz JR, Knodt AR, Radtke SR, Hariri AR. A neural biomarker of psychological vulnerability to future life stress. Neuron. 2015;85:505–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. McCrory EJ, Gerin MI, Viding E. Annual research review: childhood maltreatment, latent vulnerability and the shift to preventative psychiatry- the contribution of functional brain imaging. J Child Psychol Psychiatry. 2017;58:338–57.

    PubMed  PubMed Central  Google Scholar 

  111. Hart H, Lim L, Mehta MA, Simmons A, Mirza KAH, Rubia K. Altered fear processing in adolescents with history of severe childhood maltreatment: an fMRI study. Psychol Med. 2018;48:1092–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci. 2001;4:437–41.

    CAS  PubMed  Google Scholar 

  113. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behavior and cognition. Nat Rev Neurosci. 2009;10:434–45.

    CAS  PubMed  Google Scholar 

  114. McLaughlin KA, Peverill M, Gold AL, Alves S, Sheridan MA. Child maltreatment and neural systems underlying emotion regulation. J Am Acad Child Adolesc Psychiatry. 2015;54:753–62.

    PubMed  PubMed Central  Google Scholar 

  115. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: “liking”, “wanting”, and learning. Curr Opin Pharmacol. 2009;9:65–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Luking KR, Pagliaccio D, Luby JL, Barch DM. Reward processing and risk for depression across development. Trends Cogn Sci. 2016;20:456–68.

    PubMed  PubMed Central  Google Scholar 

  117. Mehta MA, Gore-Langton E, Golembo N, Colvert E, Williams SCR, Sonuga-Barke E. Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life. J Cogn Neurosci. 2010;22:2316–25.

    PubMed  Google Scholar 

  118. Hanson JL, Hariri AR, Williamson DE. Blunted ventral striatum development in adolescent reflects emotional neglect and predicts depressive symptoms. Biol Psychol. 2015;78:598–605.

    Google Scholar 

  119. Boecker R, Holz NE, Buchmann AF, Blomeyer D, Plichta MM, Wolf I, et al. Impact of early life adversity on reward processing in young adults: EEG-fMRI results from a prospective study over 25 years. PLoS One. 2014;9(8):e104185.

    PubMed  PubMed Central  Google Scholar 

  120. Dillon DG, Holmes AJ, Birk JL, Brooks N, Lyons-Ruth K, Pizzagalli DA. Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biol Psychiatry. 2009;66:206–13.

    PubMed  PubMed Central  Google Scholar 

  121. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry. 2009;166:702–10.

    PubMed  PubMed Central  Google Scholar 

  122. Redlich R, Grotegerd D, Opel N, Kaufmann C, Zwitserlood P, Kugel H, et al. Are you gonna leave me? Separation anxiety is associated with increased amygdala responsiveness and volume. Soc Cogn Affect Neurosci. 2015;10:278–84.

    PubMed  Google Scholar 

  123. Balodis IM, Potenza MN. Anticipatory reward processing in addicted populations: a focus on the monetary incentive delay task. Biol Psychiatry. 2015;77:434–44.

    PubMed  Google Scholar 

  124. Dennison MJ, Sheridan MA, Busso DS, Jenness JL, Everill M, Rosen ML, et al. Neurobehavioural markers of resilience to depression amongst adolescents exposed to child abuse. J Abnor Psychol. 2016;125:1201–12.

    Google Scholar 

  125. Mannella F, Gurney K, Baldassarre G. The nucleus accumbens as a nexus between values and goals in goal-directed behavior: a review and a new hypothesis. Front Behav Neurosci. 2013;7:135.

    PubMed  PubMed Central  Google Scholar 

  126. Williams LE, Bargh JA, Nocera CC, Gray JR. The unconscious regulation of emotion: nonconscious reappraisal goals modulate emotional reactivity. Emotion. 2009;9:847–54.

    PubMed  PubMed Central  Google Scholar 

  127. Koenisberg HW, Fan J, Ochsner KN, Liu X, Guise K, Pizzarello S, et al. Neural correlates of using distancing to regulate emotional responses to social situations. Neuropsychol. 2010;48:1813–22.

    Google Scholar 

  128. Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control emotion. Ann N Y Acad Sci. 2012;1251:E1–24.

    PubMed  PubMed Central  Google Scholar 

  129. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci U S A. 2013;110:15638–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee SW, Yoo JH, Kim KW, Lee JS, Kim D, Park H, et al. Aberrant function of frontoamygdala circuits in adolescents with previous verbal abuse experiences. Neuropsychol. 2015;79:76–85.

    Google Scholar 

  131. Marusak HA, Etkin A, Thomason ME. Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth. Neuroimage Clin. 2015;8:516–25.

    PubMed  PubMed Central  Google Scholar 

  132. Elsey J, Coates A, Lacadie CM, McCrory EJ, Sinha R, Mayes LC, et al. Childhood trauma and neural responses to personalized stress, favorite-food and neutral relaxing cues in adolescent. Neuropsychopharmacology. 2015;40:1580–9.

    PubMed  PubMed Central  Google Scholar 

  133. Puetz VB, Viding E, Palmer A, Kelly PA, Lickley R, Koutoufa I, et al. Altered neural response to rejection-related words in children exposed to maltreatment. J Child Psychol Psychiatry. 2016;57:1165–73.

    PubMed  PubMed Central  Google Scholar 

  134. Puetz VB, Kohn N, Dahmen B, Zvyagintsev M, Schuppen A, Schultz RT, et al. Neural response to social rejection in children with early separation experiences. J Am Acad Child Adolesc Psychiatry. 2014;53:1328–37.

    PubMed  Google Scholar 

  135. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” task: a latent variable analysis. Cogn Psychol. 2000;41:49–100.

    CAS  PubMed  Google Scholar 

  136. Mueller SC, Maheu FS, Dozier M, Peloso E, Mandell D, Leibenluft E, et al. Early life stress is associated with impairment in cognitive control in adolescence: an fMRI study. Neuropsychol. 2010;48:3037–44.

    Google Scholar 

  137. Lim L, Hart H, Mehta MA, Simmons A, Mirza K, Rubia K. Neural correlates of error processing in young people with a history of severe childhood abuse: an fMRI study. Am J Psychiatry. 2015;172:892–900.

    PubMed  Google Scholar 

  138. Snyder HR, Miyake A, Hankin BL. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Front Psychol. 2015;6:328.

    PubMed  PubMed Central  Google Scholar 

  139. Fonagy P, Allison E. The role of mentalizing and epistemic trust in the therapeutic relationship. Psychotherapy. 2015;51:372–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brambilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sala, M., Delvecchio, G., Brambilla, P. (2020). Neuroimaging and Cognition of Early Traumatic Experiences. In: Spalletta, G., Janiri, D., Piras, F., Sani, G. (eds) Childhood Trauma in Mental Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-49414-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49414-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49413-1

  • Online ISBN: 978-3-030-49414-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics