Skip to main content

Neurobiological Basis of Childhood Trauma and the Risk for Neurological Deficits Later in Life

  • Chapter
  • First Online:
Childhood Trauma in Mental Disorders

Abstract

Childhood trauma (CT) produces a cascade of neurobiological events that have the potential to cause enduring changes in brain development. These changes involve not only structural and functional cerebral modifications but also alteration of neuroendocrine pathways, in particular the hypothalamic–pituitary–adrenal axis, leading to altered action of specific hormones and neurotransmitters. The major structural consequences of CT include the following: (1) volume reduction of amygdala and hippocampus, especially when CT is experienced early in life and repeated; (2) shrinkage of dendrites and loss of spines throughout the medial prefrontal cortex, whereas dendrites expand in the orbitofrontal cortex; (3) marked reduction of volume in the middle portions of the corpus callosum, that is associated with reduced communication between left and right hemispheres. The major functional consequences of the abovementioned changes are electrical irritability of limbic structures and attenuated activity of cerebellar vermis, indicating that early trauma could interfere with the development of these structures. In addition to brain structural and functional changes, CT is associated with an increased risk of several negative health outcomes throughout the life course. In particular, the neurobiological sequelae of events in early life may contribute to late-life neurological and neurodegenerative disorders development. From a functional point of view, CT is related to impairments of self-regulation capacity, attention, and memory processing, deficits in selecting information as well as in the ability to control impulses, reasoning and regulation of emotions, up to overt manifestations of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anda RF, Felitti VJ, Bremner JD, Walker JD, Whitfield C, Perry BD, et al. The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur Arch Psychiatry Clin Neurosci. 2006;256(3):174–86.

    Article  PubMed  Google Scholar 

  2. Brown DW, Anda RF, Tiemeier H, Felitti VJ, Edwards VJ, Croft JB, et al. Adverse childhood experiences and the risk of premature mortality. Am J Prev Med. 2009;37(5):389–96.

    Article  PubMed  Google Scholar 

  3. Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF. Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord. 2004;82(2):217–25.

    Article  PubMed  Google Scholar 

  4. Adverse Childhood Experiences Study. Centers for Disease Control and Prevention Web site. 2009. http://www.cdc.gov/nccdphp/

  5. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14(4):245–58.

    Article  CAS  PubMed  Google Scholar 

  6. Wordsworth W. My heart leaps up. The complete poetical works. London: Macmillan; 1802; Bartleby.com

    Google Scholar 

  7. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP. Developmental neurobiology of childhood stress and trauma. Psychiatr Clin North Am. 2002;25(2):397–426.

    Article  PubMed  Google Scholar 

  8. Perry BD, Pollard R. Homeostasis, stress, trauma, and adaptation. A neurodevelopmental view of childhood trauma. Child Adolesc Psychiatr Clin N Am. 1998;7(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  9. Teicher MH. Wounds that time wouldn’t heal: the neurobiology of childhood abuse. Cerebrum. 2000;2:50–67.

    Google Scholar 

  10. De Bellis MD, Thomas LA. Biologic findings of post-traumatic stress disorder and child maltreatment. Curr Psychiatry Rep. 2003;5(2):108–17.

    Article  PubMed  Google Scholar 

  11. Gorman JM, Mathew S, Coplan J. Neurobiology of early life stress: nonhuman primate models. Semin Clin Neuropsychiatry. 2002;7(2):96–103.

    Article  PubMed  Google Scholar 

  12. Gutman DA, Nemeroff CB. Neurobiology of early life stress: rodent studies. Semin Clin Neuropsychiatry. 2002;7(2):89–95.

    Article  PubMed  Google Scholar 

  13. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49(12):1023–39.

    Article  CAS  PubMed  Google Scholar 

  14. Repetti RL, Taylor SE, Seeman TE. Risky families: family social environments and the mental and physical health of offspring. Psychol Bull. 2002;128(2):330–66.

    Article  PubMed  Google Scholar 

  15. Bremner JD, Vermetten E. Stress and development: behavioral and biological consequences. Dev Psychopathol. 2001;13:473–89.

    Article  Google Scholar 

  16. Miller DB, O’Callaghan JP. Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases? Metabolism. 2008;57(Suppl 2):S44–S49.

    Google Scholar 

  17. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904.

    Article  PubMed  Google Scholar 

  18. De Bellis MD, Zisk A. The biological effects of childhood trauma. Child Adolesc Psychiatr Clin N Am. 2014;23(2):185–222.

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Bellis MD. Developmental traumatology: a contributory mechanism for alcohol and substance use disorders. Psychoneuroendocrinology. 2002;27(1–2):155–70.

    Article  PubMed  Google Scholar 

  20. Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M. Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry. 1993;50(4):295–305.

    Article  CAS  PubMed  Google Scholar 

  21. De Bellis MD, Putnam FW. The psychobiology of childhood maltreatment. Child Adolesc Psychiat Clin North Am. 1994;3:663–77.

    Article  Google Scholar 

  22. Bremner JD, Innis RB, Ng CK, Staib LH, Salomon RM, Bronen RA, et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54(3):246–54.

    Article  CAS  PubMed  Google Scholar 

  23. Bremner JD, Krystal JH, Southwick SM, Charney DS. Noradrenergic mechanisms in stress and anxiety: II. Clin Stud Synapse. 1996;23(1):39–51.

    Article  CAS  Google Scholar 

  24. Southwick SM, Krystal JH, Morgan CA, Johnson D, Nagy LM, Nicolaou A, et al. Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1993;50(4):266–74.

    Article  CAS  PubMed  Google Scholar 

  25. Martin SJ, Grimwood PD, Morris RGM. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711.

    Article  CAS  PubMed  Google Scholar 

  26. Neves G, Cooke SF, Bliss TVP. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci. 2008;9(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  27. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313(5790):1141–4.

    Article  CAS  PubMed  Google Scholar 

  28. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313(5790):1093–7.

    Article  CAS  PubMed  Google Scholar 

  29. Lømo T. Frequency potentiation of excitatory synaptic activity in the dentate are of the hippocampal formation. Acta Physiol Scand. 1966;68(277):128.

    Google Scholar 

  30. Bliss TV, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barnes CA, Jung MW, McNaughton BL, Korol DL, Andreasson K, Worley PF. LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J Neurosci. 1994;14(10):5793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris RG, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319(6056):774–6.

    Article  CAS  PubMed  Google Scholar 

  33. Moore RY, Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci. 1979;2:113–68.

    Article  CAS  PubMed  Google Scholar 

  34. Segal M. Norepinephrine modulates reactivity of hippocampal cells to chemical stimulation in vitro. Exp Neurol. 1982;77(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  35. Madison DV, Nicoll R. Cyclic adenosine 3¢,5¢-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J Physiol. 1986;372:245–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frey S, Bergado JA, Frey JU. Modulation of late phases of long-term potentiation in rat dentate gyrus by stimulation of the medial septum. Neuroscience. 2003;118(4):1055–62.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas SA, Palmiter RD. Disruption of the dopamine beta-hydroxylase gene in mice suggests roles for norepinephrine in motor function, learning, and memory. Behav Neurosci. 1997;111(3):579–89.

    Article  CAS  PubMed  Google Scholar 

  38. Czyrack A, Maćkowiak M, Chocyk A, Fijal K, Wedzony K. Role of glucocorticoids in the regulation of dopaminergic neurotransmission. Pol J Pharmacol. 2003;55(6):667–74.

    Google Scholar 

  39. Dalmman MF, Scribner KS, Paecoraro N. Chronic stress induced effects of corticosterone on brain: direct and indirect. Ann N Y Acad Sci. 2004;1018:141–50.

    Article  CAS  Google Scholar 

  40. Marinelli M, Rudick CN, Hu XT, White FJ. Excitability of dopamine neurons: modulation and physiological consequences. CNS Neurol Disord Drug Targets. 2006;5(1):79–97.

    Article  CAS  PubMed  Google Scholar 

  41. Piazza PV, Barrot M, Rouge-Pont F, Marinelli M, Maccari S, Abrous DN, et al. Suppression of glucocorticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission. Proc Natl Acad Sci U S A. 1996;93(26):15445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cabib S, Puglisi-Allegra S. Stress, depression and the mesolimbic dopamine system. Psychopharmacology. 1996;128(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  43. Butts KA, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area. Int J Neuropsychopharmacol. 2013;16(8):1799–807.

    Article  CAS  PubMed  Google Scholar 

  44. Reinhard JF Jr, Bannon MJ, Roth RH. Acceleration by stress of dopamine synthesis and metabolism in prefrontal cortex: antagonism by diazepam. Naunyn Schmiedeberg's Arch Pharmacol. 1982;318(4):374–7.

    Article  CAS  Google Scholar 

  45. Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res. 1713;2018:16–31.

    Google Scholar 

  46. Moore H, Rose HJ, Grace AA. Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology. 2001;24(4):410–9.

    Article  CAS  PubMed  Google Scholar 

  47. Engler D, Redei E, Kola I. The corticotropin-release inhibitory factor hypothesis: a review of the evidence for the existence of inhibitory as well as stimulatory hypophysiotropic regulation of adrenocorticotropin secretion and biosynthesis. Endocr Rev. 1999;20(4):460–500.

    CAS  PubMed  Google Scholar 

  48. Goodman M, New A, Siever L. Trauma, genes, and the neurobiology of personality disorders. Ann N Y Acad Sci. 2004;1032:104–16.

    Article  CAS  PubMed  Google Scholar 

  49. Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety. 2000;12(Suppl 1):2–19.

    Article  PubMed  Google Scholar 

  50. Kim YK, Amidfar M, Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:103–12.

    Article  CAS  PubMed  Google Scholar 

  51. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003;27(1–2):33–44.

    Article  PubMed  Google Scholar 

  52. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253(5026):1380–6.

    Article  CAS  PubMed  Google Scholar 

  53. LeDoux JE. Emotion and amygdala. New York: Wiley Liss; 1992.

    Google Scholar 

  54. de Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, et al. Frequency of hippocampus atrophy in normal elderly and Alzheimer’s disease patients. Neurobiol Aging. 1997;18(1):1–11.

    Google Scholar 

  55. Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, et al. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia. 2007;50(4):711–19.

    Google Scholar 

  56. Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry. 2003;54(3):338–52.

    Article  PubMed  Google Scholar 

  57. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry. 1999;46(12):1595–602.

    Google Scholar 

  58. Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry. 1996;40(11):1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gianaros PJ, Jennings JR, Sheu LK, Greer PJ, Kuller LH, Matthews KA. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. NeuroImage. 2007;35(2):795–803.

    Article  PubMed  Google Scholar 

  60. Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 2008;64(6):484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cho K. Chronic 'jet lag' produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci. 2001;4(6):567–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, et al. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry. 2003;160(5):924–32.

    Article  PubMed  Google Scholar 

  64. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152(7):973–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C, et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse--a preliminary report. Biol Psychiatry. 1997;41(1):23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stein MB. Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med. 1997;27:951–9.

    Article  CAS  PubMed  Google Scholar 

  67. Roozendaal B, Hahn EL, Nathan SV, de Quervain DJ, McGaugh JL. Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. J Neurosci. 2004;24(37):8161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McEwen BS. Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci U S A. 2012;109(Suppl 2):17180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A. 2005;102(26):9371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 2002;22(15):6810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience. 2007;144(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  72. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48(8):813–29.

    Article  CAS  PubMed  Google Scholar 

  73. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Jager M, Groll C, et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry. 2003;53(4):338–44.

    Article  PubMed  Google Scholar 

  74. Driessen M, Herrmann J, Stahl K, Zwaan M, Meier S, Hill A, et al. Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Arch Gen Psychiatry. 2000;57(12):1115–22.

    Article  CAS  PubMed  Google Scholar 

  75. LeDoux JE. The emotional brain: the mysterious underpinnings of emotional life. New York, NY: Simon & Schuster; 1996.

    Google Scholar 

  76. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26(30):7870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schoenbaum G, Roesch M. Orbitofrontal cortex, associative learning, and expectancies. Neuron. 2005;47(5):633–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science. 2009;325(5940):621–5.

    Article  CAS  PubMed  Google Scholar 

  79. Liston C, McEwen BS, Casey BJ. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc Natl Acad Sci U S A. 2009;106(3):912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lauder JM. Hormonal and humoral influences on brain development. Psychoneuroendocrinology. 1983;8(2):121–55.

    Article  CAS  PubMed  Google Scholar 

  81. Berrebi AS, Fitch RH, Ralphe DL, Denenberg JO, Friedrich VL Jr, Denenberg VH. Corpus callosum: region-specific effects of sex, early experience and age. Brain Res. 1988;438(1–2):216–24.

    Article  CAS  PubMed  Google Scholar 

  82. Denenberg VH. In: Glick SD, editor. Hemispheric laterality, behavioral asymmetry, and the effects of early experience in rats. Orlando, FL: Academic Press; 1985.

    Chapter  Google Scholar 

  83. Teicher MH, Ito Y, Glod CA, Andersen SL, Dumont N, Ackerman E. Preliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Ann N Y Acad Sci. 1997;821:160–75.

    Article  CAS  PubMed  Google Scholar 

  84. De Bellis MD, Keshavan MS, Clark DB, Casey BJ, Giedd JN, Boring AM, et al. A.E. Bennett Research Award. Developmental traumatology. Part II: Brain development. Biol Psychiatry. 1999;45(10):1271–84.

    Article  PubMed  Google Scholar 

  85. Teicher MH, Andersen SL, Dumont NL, et al. Childhood neglect attentuates development of the corpus callosum. Soc Neurosci Abstr. 2000;26:549.

    Google Scholar 

  86. Yazgan MY, Wexler BE, Kinsbourne M, Peterson B, Leckman JF. Functional significance of individual variations in callosal area. Neuropsychologia. 1995;33(6):769–79.

    Article  CAS  PubMed  Google Scholar 

  87. Altman J, Bayer SA. Development of the cerebellar system in relation to its evolution, structure, and functions. Boca Raton, FL: CRC Press; 1997.

    Google Scholar 

  88. Sanchez MM, Young LJ, Plotsky PM, Insel TR. Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci. 2000;20(12):4657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lawson A, Ahima RS, Krozowski Z, Harlan RE. Postnatal development of corticosteroid receptor immunoreactivity in the rat cerebellum and brain stem. Neuroendocrinology. 1992;55(6):695–707.

    Article  CAS  PubMed  Google Scholar 

  90. Pavlik A, Buresova M. The neonatal cerebellum: the highest level of glucocorticoid receptors in the brain. Brain Res. 1984;314(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  91. Schapiro S. Hormonal and environmental influences on rat brain and behavior. In: Sterman MB, McGinty DJ, editors. Brain development and behavior. NY: Academic Press; 1971. p. 307–34.

    Google Scholar 

  92. Ferguson SA, Holson RR. Neonatal dexamethasone on day 7 causes mild hyperactivity and cerebellar stunting. Neurotoxicol Teratol. 1999;21(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  93. Anderson CM, Teicher MH, Polcari A, Renshaw PF. Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: potential role of the vermis in stress-enhanced risk for drug abuse. Psychoneuroendocrinology. 2002;27(1–2):231–44.

    Article  PubMed  Google Scholar 

  94. Dong M, Giles WH, Felitti VJ, Dube SR, Williams JE, Chapman DP, et al. Insights into causal pathways for ischemic heart disease: adverse childhood experiences study. Circulation. 2004;110(13):1761–6.

    Article  PubMed  Google Scholar 

  95. Williamson DF, Thompson TJ, Anda RF, Dietz WH, Felitti V. Body weight and obesity in adults and self-reported abuse in childhood. Int J Obes Relat Metab Disord. 2002;26(8):1075–82.

    Article  CAS  PubMed  Google Scholar 

  96. Wright RJ, Hanrahan JP, Tager I, Speizer FE. Effect of the exposure to violence on the occurrence and severity of childhood asthma in an inner-city population. Am J Respir Crit Care Med. 1997;155:A972.

    Google Scholar 

  97. Chapman DP, Anda RF, Felitti VJ, Dube SR, Edwards VJ, Whitfield CL. Epidemiology of adverse childhood experiences and depressive disorders in a large health maintenance organization population. J Affect Disord. 2004;82:217–25.

    Article  PubMed  Google Scholar 

  98. Van Niel C, Pachter LM, Wade R Jr, Felitti VJ, Stein MT. Adverse events in children: predictors of adult physical and mental conditions. J Dev Behav Pediatr. 2014;35(8):549–51.

    Article  PubMed  Google Scholar 

  99. Danese A, Moffitt TE, Harrington H, Milne BJ, Polanczyk G, Pariante CM, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med. 2009;163(12):1135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006;16(2):91–104.

    Article  PubMed  Google Scholar 

  101. Brunner E, Davey Smith G, Marmot M, Canner R, Beksinska M, O'Brien J. Childhood social circumstances and psychosocial and behavioural factors as determinants of plasma fibrinogen. Lancet. 1996;347(9007):1008–13.

    Article  CAS  PubMed  Google Scholar 

  102. Poulton R, Caspi A, Milne BJ, Thomson WM, Taylor A, Sears MR, et al. Association between children's experience of socioeconomic disadvantage and adult health: a life-course study. Lancet. 2002;360(9346):1640–5.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Costello EJ, Compton SN, Keeler G, Angold A. Relationships between poverty and psychopathology: a natural experiment. JAMA. 2003;290(15):2023–9.

    Article  CAS  PubMed  Google Scholar 

  104. Widom CS, DuMont K, Czaja SJ. A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry. 2007;64(1):49–56.

    Article  PubMed  Google Scholar 

  105. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A. 2007;104(4):1319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomas C, Hypponen E, Power C. Obesity and type 2 diabetes risk in midadult life: the role of childhood adversity. Pediatrics. 2008;121(5):e1240–9.

    Article  PubMed  Google Scholar 

  107. Baumeister RF, Leary MR. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol Bull. 1995;117(3):497–529.

    Article  CAS  PubMed  Google Scholar 

  108. Cacioppo JT, Patrick W. Loneliness: human nature and the need for social connection. New York: W Norton & Co Inc.; 2008.

    Google Scholar 

  109. House JS, Landis KR, Umberson D. Social relationships and health. Science. 1988;241(4865):540–5.

    Article  PubMed  Google Scholar 

  110. Shonkoff JP, Phillips D. From neurons to neighborhoods: the science of early childhood development. Washington, DC: National Academy Press; 2000.

    Google Scholar 

  111. Caspi A, Harrington H, Moffitt TE, Milne BJ, Poulton R. Socially isolated children 20 years later: risk of cardiovascular disease. Arch Pediatr Adolesc Med. 2006;160(8):805–11.

    Article  PubMed  Google Scholar 

  112. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2(8663):577–80.

    Article  CAS  PubMed  Google Scholar 

  113. Guttmacher AE, Collins FS, Carmona RH. The family history—more important than ever. N Engl J Med. 2004;351(22):2333–6.

    Article  CAS  PubMed  Google Scholar 

  114. Baker JL, Olsen LW, Sorensen TI. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007;357(23):2329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Comijs HC, van den Kommer TN, Minnaar RW, Penninx BW, Deeg DJ. Accumulated and differential effects of life events on cognitive decline in older persons: depending on depression, baseline cognition, or ApoE epsilon4 status? J Gerontol B Psychol Sci Soc Sci. 2011;66(Suppl 1):i111–20.

    Article  PubMed  Google Scholar 

  116. Andel R, Crowe M, Hahn EA, Mortimer JA, Pedersen NL, Fratiglioni L, et al. Work-related stress may increase the risk of vascular dementia. J Am Geriatr Soc. 2012;60(1):60–7.

    Article  PubMed  Google Scholar 

  117. Wang HX, Wahlberg M, Karp A, Winblad B, Fratiglioni L. Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement. 2012;8(2):114–20.

    Article  PubMed  Google Scholar 

  118. Lee BK, Glass TA, Wand GS, McAtee MJ, Bandeen-Roche K, Bolla KI, et al. Apolipoprotein e genotype, cortisol, and cognitive function in community-dwelling older adults. Am J Psychiatry. 2008;165(11):1456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Peavy GM, Lange KL, Salmon DP, Patterson TL, Goldman S, Gamst AC, et al. The effects of prolonged stress and APOE genotype on memory and cortisol in older adults. Biol Psychiatry. 2007;62(5):472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Persson G, Skoog I. A prospective population study of psychosocial risk factors for late onset dementia. Int J Geriatr Psychiatry. 1996;11:15–22.

    Article  Google Scholar 

  121. Moceri VM, Kukull WA, Emanual I, van Belle G, Starr JR, Schellenberg GD, et al. Using census data and birth certificates to reconstruct the early-life socioeconomic environment and the relation to the development of Alzheimer's disease. Epidemiology. 2001;12(4):383–9.

    Article  CAS  PubMed  Google Scholar 

  122. Korten NC, Penninx BW, Pot AM, Deeg DJ, Comijs HC. Adverse childhood and recent negative life events: contrasting associations with cognitive decline in older persons. J Geriatr Psychiatry Neurol. 2014;27(2):128–38.

    Article  PubMed  Google Scholar 

  123. Ritchie K, Jaussent I, Stewart R, Dupuy AM, Courtet P, Ancelin ML, et al. Association of adverse childhood environment and 5-HTTLPR genotype with late-life depression. J Clin Psychiatry. 2009;70(9):1281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ritchie K, Jaussent I, Stewart R, Dupuy AM, Courtet P, Malafosse A, et al. Adverse childhood environment and late-life cognitive functioning. Int J Geriatr Psychiatry. 2011;26(5):503–10.

    Article  PubMed  Google Scholar 

  125. Pilleron S, Guerchet M, Ndamba-Bandzouzi B, Mbelesso P, Dartigues JF, Preux PM, et al. Association between stressful life events and cognitive disorders in Central Africa: results from the EPIDEMCA program. Neuroepidemiology. 2015;44(2):99–107.

    Article  PubMed  Google Scholar 

  126. Radford K, Delbaere K, Draper B, Mack HA, Daylight G, Cumming R, et al. Childhood stress and adversity is associated with late-life dementia in aboriginal Australians. Am J Geriatr Psychiatry. 2017;25(10):1097–106.

    Article  PubMed  Google Scholar 

  127. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  128. Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci. 2015;18(5):773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Teicher MH, Samson JA. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry. 2016;57(3):241–66.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn. 2007;65(3):209–37.

    Article  CAS  PubMed  Google Scholar 

  131. Ritchie K, Ritchie CW, Yaffe K, Skoog I, Scarmeas N. Is late-onset Alzheimer's disease really a disease of midlife? Alzheimers Dement (N Y). 2015;1(2):122–30.

    Article  Google Scholar 

  132. Weder N, Zhang H, Jensen K, Yang BZ, Simen A, Jackowski A, et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry. 2014;53(4):417–24. e5

    Google Scholar 

  133. Ali I, Salzberg MR, French C, Jones NC. Electrophysiological insights into the enduring effects of early life stress on the brain. Psychopharmacology. 2011;214(1):155–73.

    Article  CAS  PubMed  Google Scholar 

  134. McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonte B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Szyf M. The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics. 2011;6(8):971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Taylor SE, Way BM, Seeman TE. Early adversity and adult health outcomes. Dev Psychopathol. 2011;23(3):939–54.

    Article  PubMed  Google Scholar 

  137. Toyokawa S, Uddin M, Koenen KC, Galea S. How does the social environment 'get into the mind'? Epigenetics at the intersection of social and psychiatric epidemiology. Soc Sci Med. 2012;74(1):67–74.

    Article  PubMed  Google Scholar 

  138. Anda RF, Croft JB, Felitti VJ, Nordenberg D, Giles WH, Williamson DF, et al. Adverse childhood experiences and smoking during adolescence and adulthood. JAMA. 1999;282(17):1652–8.

    Article  CAS  PubMed  Google Scholar 

  139. Dube SR, Anda RF, Felitti VJ, Edwards VJ, Croft JB. Adverse childhood experiences and personal alcohol abuse as an adult. Addict Behav. 2002;27(5):713–25.

    Article  PubMed  Google Scholar 

  140. Dube SR, Felitti VJ, Dong M, Chapman DP, Giles WH, Anda RF. Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics. 2003;111(3):564–72.

    Article  PubMed  Google Scholar 

  141. McLaughlin KA, Conron KJ, Koenen KC, Gilman SE. Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: a test of the stress sensitization hypothesis in a population-based sample of adults. Psychol Med. 2010;40(10):1647–58.

    Article  CAS  PubMed  Google Scholar 

  142. Schussler-Fiorenza Rose SM, Eslinger JG, Zimmerman L, Scaccia J, Lai BS, Lewis C, et al. Adverse childhood experiences, support, and the perception of ability to work in adults with disability. PLoS One. 2016;11(7):e0157726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Felitti VJ. Adverse childhood experiences and adult health. Acad Pediatr. 2009;9(3):131–2.

    Article  PubMed  Google Scholar 

  144. Felitti VJ, Anda RF. The relationship of adverse childhood experiences to adult health, well-being, social function, and healthcare. Cambridge, UK: Cambridge University Press; 2009.

    Google Scholar 

  145. Howe ML, Courage ML. On resolving the enigma of infantile amnesia. Psychol Bull. 1993;113(2):305–26.

    Article  CAS  PubMed  Google Scholar 

  146. Nelson K, Fivush R. The emergence of autobiographical memory: a social cultural developmental theory. Psychol Rev. 2004;111(2):486–511.

    Article  PubMed  Google Scholar 

  147. Pillemer DB. What is remembered about early childhood events? Clin Psychol Rev. 1998;18(8):895–913.

    Article  CAS  PubMed  Google Scholar 

  148. Bremner JD, Randall P, Scott TM, Capelli S, Delaney R, McCarthy G, et al. Deficits in short-term memory in adult survivors of childhood abuse. Psychiatry Res. 1995;59(1–2):97–107.

    Article  CAS  PubMed  Google Scholar 

  149. Edwards VJ, Fivush R, Anda RF, Felitti VJ, Nordenberg DF. Autobiographical memory disturbances in childhood abuse survivors. In: Freyd JJ, DePrince AP, editors. TacsAmom, science, experience. Binghamton, NY: Haworth Press; 2001.

    Google Scholar 

  150. Brown DW, Anda RF, Edwards VJ, Felitti VJ, Dube SR, Giles WH. Adverse childhood experiences and childhood autobiographical memory disturbance. Child Abuse Negl. 2007;31(9):961–9.

    Article  PubMed  Google Scholar 

  151. De Bellis MD, Baum AS, Birmaher B, Keshavan MS, Eccard CH, Boring AM, et al. A.E. Bennett research award. Developmental traumatology. Part I: Biological stress systems. Biol Psychiatry. 1999;45(10):1259–70.

    Article  PubMed  Google Scholar 

  152. Thomas LA, De Bellis MD. Pituitary volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol Psychiatry. 2004;55(7):752–8.

    Article  PubMed  Google Scholar 

  153. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46(11):1472–9.

    Article  CAS  PubMed  Google Scholar 

  154. Ladd CO, Owens MJ, Nemeroff CB. Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology. 1996;137(4):1212–8.

    Article  CAS  PubMed  Google Scholar 

  155. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277(5332):1659–62.

    Article  CAS  PubMed  Google Scholar 

  156. McEwen BS, Angulo J, Cameron H, Chao HM, Daniels D, Gannon MN, et al. Paradoxical effects of adrenal steroids on the brain: protection versus degeneration. Biol Psychiatry. 1992;31(2):177–99.

    Article  CAS  PubMed  Google Scholar 

  157. Sapolsky RM. Why stress is bad for your brain. Science. 1996;273(5276):749–50.

    Article  CAS  PubMed  Google Scholar 

  158. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schiffer F, Teicher MH, Papanicolaou AC. Evoked potential evidence for right brain activity during the recall of traumatic memories. J Neuropsychiatry Clin Neurosci. 1995;7(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  160. Kajeepeta S, Gelaye B, Jackson CL, Williams MA. Adverse childhood experiences are associated with adult sleep disorders: a systematic review. Sleep Med. 2015;16(3):320–30.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Colten HR, Altevogt BM. Sleep disorders and sleep deprivation: an unmet public health problem. Press; IoMNA, editor. Washington, DC: Institute of Medicine Committee on Sleep Medicine and Research; 2006.

    Google Scholar 

  162. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585–92.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Combs K, Smith PJ, Sherwood A, Hoffman B, Carney RM, Freedland K, et al. Impact of sleep complaints and depression outcomes among participants in the standard medical intervention and long-term exercise study of exercise and pharmacotherapy for depression. J Nerv Ment Dis. 2014;202(2):167–71.

    Article  PubMed  Google Scholar 

  164. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A. 2014;111(29):10761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and nutrition examination survey. Hypertension. 2006;47(5):833–9.

    Article  CAS  PubMed  Google Scholar 

  166. Uehli K, Miedinger D, Bingisser R, Durr S, Holsboer-Trachsler E, Maier S, et al. Sleep quality and the risk of work injury: a Swiss case-control study. J Sleep Res. 2014;23(5):545–53.

    Article  PubMed  Google Scholar 

  167. Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–14.

    Article  CAS  PubMed  Google Scholar 

  168. Vgontzas AN, Bixler EO, Lin HM, Prolo P, Mastorakos G, Vela-Bueno A, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–94.

    Article  CAS  PubMed  Google Scholar 

  169. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol. 1999;160(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  170. Elzinga BM, Spinhoven P, Berretty E, de Jong P, Roelofs K. The role of childhood abuse in HPA-axis reactivity in social anxiety disorder: a pilot study. Biol Psychol. 2010;83(1):1–6.

    Article  PubMed  Google Scholar 

  171. Heim C, Newport DJ, Heit S, Graham YP, Wilcox M, Bonsall R, et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA. 2000;284(5):592–7.

    Article  CAS  PubMed  Google Scholar 

  172. Nicolson NA, Davis MC, Kruszewski D, Zautra AJ. Childhood maltreatment and diurnal cortisol patterns in women with chronic pain. Psychosom Med. 2010;72(5):471–80.

    Article  PubMed  Google Scholar 

  173. Videlock EJ, Adeyemo M, Licudine A, Hirano M, Ohning G, Mayer M, et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology. 2009;137:1954–62.

    Article  CAS  PubMed  Google Scholar 

  174. Bicanic IA, Postma RM, Sinnema G, De Roos C, Olff M, Van Wesel F, et al. Salivary cortisol and dehydroepiandrosterone sulfate in adolescent rape victims with post traumatic stress disorder. Psychoneuroendocrinology. 2013;38(3):408–15.

    Article  CAS  PubMed  Google Scholar 

  175. Carpenter LL, Tyrka AR, Ross NS, Khoury L, Anderson GM, Price LH. Effect of childhood emotional abuse and age on cortisol responsivity in adulthood. Biol Psychiatry. 2009;66(1):69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. MacMillan HL, Georgiades K, Duku EK, Shea A, Steiner M, Niec A, et al. Cortisol response to stress in female youths exposed to childhood maltreatment: results of the youth mood project. Biol Psychiatry. 2009;66(1):62–8.

    Article  PubMed  Google Scholar 

  177. Bader K, Schafer V, Schenkel M, Nissen L, Schwander J. Adverse childhood experiences associated with sleep in primary insomnia. J Sleep Res. 2007;16(3):285–96.

    Article  PubMed  Google Scholar 

  178. Perlis ML, Giles DE, Mendelson WB, Bootzin RR, Wyatt JK. Psychophysiological insomnia: the behavioural model and a neurocognitive perspective. J Sleep Res. 1997;6(3):179–88.

    Article  CAS  PubMed  Google Scholar 

  179. Riemann D, Spiegelhalder K, Feige B, Voderholzer U, Berger M, Perlis M, et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14(1):19–31.

    Article  PubMed  Google Scholar 

  180. Sher L. The concept of post-traumatic mood disorder and its implications for adolescent suicidal behavior. Minerva Pediatr. 2008;60(6):1393–9.

    CAS  PubMed  Google Scholar 

  181. Cahill LT, Kaminer RK, Johnson PG. Developmental, cognitive, and behavioral sequelae of child abuse. Child Adolesc Psychiatr Clin N Am. 1999;8(4):827–43.

    Article  CAS  PubMed  Google Scholar 

  182. Emiroglu FN, Kurul S, Akay A, Miral S, Dirik E. Assessment of child neurology outpatients with headache, dizziness, and fainting. J Child Neurol. 2004;19(5):332–6.

    Article  PubMed  Google Scholar 

  183. O’Hare C, McCrory C, O’Leary N, O’Brien H, Kenny RA. Childhood trauma and lifetime syncope burden among older adults. J Psychosom Res. 2017;97:63–9.

    Article  PubMed  Google Scholar 

  184. Tannemaat MR, van Niekerk J, Reijntjes RH, Thijs RD, Sutton R, van Dijk JG. The semiology of tilt-induced psychogenic pseudosyncope. Neurology. 2013;81(8):752–8.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Beacher FD, Gray MA, Mathias CJ, Critchley HD. Vulnerability to simple faints is predicted by regional differences in brain anatomy. NeuroImage. 2009;47(3):937–45.

    Article  PubMed  Google Scholar 

  186. Saleh A, Potter GG, McQuoid DR, Boyd B, Turner R, MacFall JR, et al. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med. 2017;47(1):171–81.

    Article  CAS  PubMed  Google Scholar 

  187. Jacobson M. Developmental neurobiology. New York: Plenum Press; 1991.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Assogna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assogna, F., Piras, F., Spalletta, G. (2020). Neurobiological Basis of Childhood Trauma and the Risk for Neurological Deficits Later in Life. In: Spalletta, G., Janiri, D., Piras, F., Sani, G. (eds) Childhood Trauma in Mental Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-49414-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49414-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49413-1

  • Online ISBN: 978-3-030-49414-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics