Skip to main content

Abstract

Passive radio frequency identification (RFID) tags lack the resources for standard cryptography, but are straightforward to clone. Identifying RF signatures that are unique to an emitter’s signal is known as physical-layer identification, a technique that allows for distinction between cloned devices. In this work, we study the effect real-world environmental variations have on the physical-layer fingerprints of passive RFID tags. Signals are collected for a variety of reader frequencies, tag orientations, and ambient conditions, and pattern classification techniques are applied to automatically identify these unique RF signatures. We show that identically programmed RFID tags can be distinguished using features generated from DWFP representations of the raw RF signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cambridge, MA (http://www.thingmagic.com).

  2. 2.

    St Louis, MI (http://www.lairdtech.com).

  3. 3.

    Mountain View, CA (http://www.ettus.com).

  4. 4.

    http://www.compsci.wm.edu/SciClone/.

  5. 5.

    MATLAB’s Image Processing Toolbox (MATLAB, 2008, The Mathworks, Natick, MA).

  6. 6.

    http://profs.sci.univr.it/~desena/FMT.

References

  1. Ngai EWT, Moon KKL, Riggins FJ, Yi CY (2008) RFID research: an academic literature review (1995–2005) and future research directions. Int J Prod Econ 112(2):510–520

    Article  Google Scholar 

  2. Abdulhadi AE, Abhari R (2012) Design and experimental evaluation of miniaturized monopole UHF RFID tag antennas. IEEE Antennas Wirel Propag Lett 11:248–251

    Article  Google Scholar 

  3. Khan MA, Bhansali US, Alshareef HN (2012) High-performance non-volatile organic ferroelectric memory on banknotes. Adv Mat 24(16):2165–2170

    Article  Google Scholar 

  4. Juels A (2006) RFID security and privacy: a research survey. IEEE J Sel Areas Commun 24(2):381–394

    Article  MathSciNet  Google Scholar 

  5. Halamka J, Juels A, Stubblefield A, Westhues J (2006) The security implications of verichip cloning. J Am Med Inform Assoc 13(6):601–607

    Article  Google Scholar 

  6. Heydt-Benjamin T, Bailey D, Fu K, Juels A, O’Hare T (2007) Vulnerabilities in first-generation RFID-enabled credit cards. In: Dietrich S, Dhamija R (eds) Financial Cryptography and Data Security, vol 4886. Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp 2–14

    Chapter  Google Scholar 

  7. Richter H, Mostowski W, Poll E (2008) Fingerprinting passports. In: NLUUG Spring conference on security, pp 21–30

    Google Scholar 

  8. White D (2005) NCR: RFID in retail. In: RFID: applications, security, and privacy, pp 381–395

    Google Scholar 

  9. Westhues J (2005) Hacking the prox card. In: RFID: applications, security, and privacy, pp 291–300

    Google Scholar 

  10. Smart Card Alliance (2007) Proximity mobile payments: leveraging NFC and the contactless financial payments infrastructure. Whitepaper

    Google Scholar 

  11. Léopold E (2009) The future of mobile check-in. J Airpt Manag 3(3):215–222

    Google Scholar 

  12. Wang MH, Liu JF, Shen J, Tang YZ, Zhou N (2012) Security issues of RFID technology in supply chain management. Adv Mater Res 490:2470–2474

    Article  Google Scholar 

  13. Juels A (2004) Yoking-proofs for RFID tags. In: Proceedings of the second annual IEEE pervasive computing and communication workshops (PERCOMW 2004), PERCOMW ’04, pp 138–143

    Google Scholar 

  14. Juels A (2005) Strengthening epc tags against cloning. In: Proceedings of the 4th ACM workshop on wireless security, WiSe ’05, pp 67–76. ACM, New York

    Google Scholar 

  15. Riezenman MJ (2000) Cellular security: better, but foes still lurk. IEEE Spectr 37(6):39–42

    Article  Google Scholar 

  16. Suski WC, Temple MA, Mendenhall MJ, Mills RF (2008) Using spectral fingerprints to improve wireless network security. In: Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE. IEEE, New Orleans, pp 1–5

    Google Scholar 

  17. Gerdes RM, Mina M, Russell SF, Daniels TE (2012) Physical-layer identification of wired ethernet devices. IEEE Trans Inf Forensics Secur 7(4):1339–1353

    Google Scholar 

  18. Kennedy IO, Scanlon P, Mullany FJ, Buddhikot MM, Nolan KE, Rondeau TW (2008) Radio transmitter fingerprinting: a steady state frequency domain approach. In: Proceedings of the IEEE 68th vehicular technology conference (VTC 2008), pp 1–5

    Google Scholar 

  19. Danev B, Heydt-Benjamin TS, Čapkun S (2009) Physical-layer identification of RFID devices. In: Proceedings of the 18th conference on USENIX security symposium, SSYM’09. USENIX Association, Berkeley, CA, USA, pp 199–214

    Google Scholar 

  20. Bertoncini C, Rudd K, Nousain B, Hinders M (2012) Wavelet fingerprinting of radio-frequency identification (RFID) tags. IEEE Trans Ind Electron 59(12):4843–4850

    Article  Google Scholar 

  21. Zanetti D, Danevs B, Čapkun S (2010) Physical-layer identification of UHF RFID tags. In: Proceedings of the sixteenth annual international conference on Mobile computing and networking, MobiCom ’10. ACM, New York, NY, USA, pp 353–364

    Google Scholar 

  22. Romero HP, Remley KA, Williams DF, Wang C-M (May 2009) Electromagnetic measurements for counterfeit detection of radio frequency identification cards. IEEE Trans Microw Theory Tech 57(5):1383–1387

    Google Scholar 

  23. EPCglobal Inc. (2008) EPC radio-frequency identity protocols: class-1 generation-2 UHF RFID protocol for Communications at 860 MHz–960 MHz Version 1.2.0

    Google Scholar 

  24. GNU Radio Website (2011) Software. http://www.gnuradio.org

  25. Ellis KJ, Serinken N (2001) Characteristics of radio transmitter fingerprints. Radio Sci 36(4):585–597

    Article  Google Scholar 

  26. Hou JD, Hinders MK (2002) Dynamic wavelet fingerprint identification of ultrasound signals. Mater Eval 60(9):1089–1093

    Google Scholar 

  27. Haralick RM, Shapiro LG (1992) Computer and robot vision, vol 1. Addison-Wesley, Boston, MA

    Google Scholar 

  28. Learned RE, Willsky AS (1995) A wavelet packet approach to transient signal classification. Appl Comput Harmon Anal 2(3):265–278

    Article  MATH  Google Scholar 

  29. Feng Y, Schlindwein FS (2009) Normalized wavelet packets quantifiers for condition monitoring. Mech Syst Signal Process 23(3):712–723

    Google Scholar 

  30. de Sena A, Rocchesso D (2007) A fast Mellin and scale transform. EURASIP J Adv Signal Process 2007(1):089170

    Google Scholar 

  31. Harley JB, Moura JMF (2011) Guided wave temperature compensation with the scale-invariant correlation coefficient. In: 2011 IEEE International Ultrasonics Symposium (IUS), pp 1068–1071, Orlando, FL

    Google Scholar 

  32. Harley JB, Ying Y, Moura JMF, Oppenheim IJ, Sobelman L (2012) Application of Mellin transform features for robust ultrasonic guided wave structural health monitoring. AIP Conf Proc 1430:1551–1558

    Article  Google Scholar 

  33. Sundaram H, Joshi SD, Bhatt RKP (1997) Scale periodicity and its sampling theorem. IEEE Trans Signal Proc 45(7):1862–1865

    Google Scholar 

  34. Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–449

    Article  MATH  Google Scholar 

  35. Weiss GM, Provost F (2001) The effect of class distribution on classifier learning: Technical Report ML-TR-44. Department of Computer Science, Rutgers University

    Google Scholar 

  36. Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the 14th international conference on machine learning. Morgan Kaufmann Publishers, Inc, Burlington, pp 179–186

    Google Scholar 

  37. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  38. Fukunaga K (1990) Introduction to statistical pattern recognition. Computer science and scientific computing, 2nd edn. Academic Press, Boston

    Google Scholar 

  39. Kuncheva LI (2004) Combining pattern classifiers. Wiley, New York

    Book  MATH  Google Scholar 

  40. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  41. Webb AR (2012) Statistical pattern recognition. Wiley, Hoboken

    Google Scholar 

  42. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  43. Kanal L (1974) Patterns in pattern recognition: 1968–1974. IEEE Trans Inf Theory 20(6):697–722

    Article  MathSciNet  MATH  Google Scholar 

  44. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Patt Anal Mach Intell 22(1):4–37

    Google Scholar 

  45. Watanabe S (1985) Pattern recognition: human and mechanical. Wiley-Interscience publication, Hoboken

    Google Scholar 

  46. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97(1):245–271

    Article  MathSciNet  MATH  Google Scholar 

  47. Jain AK, Chandrasekaran B (1982) Dimensionality and sample size considerations in pattern recognition practice. In: Krishnaiah PR, Kanal LN (eds) Classification pattern recognition and reduction of dimensionality. Handbook of Statistics, vol 2. Elsevier, Amsterdam, pp 835–855

    Google Scholar 

  48. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Article  Google Scholar 

  49. Dash M, Liu H (1997) Feature selection for classification. Intellect Data Anal 1(1–4):131–156

    Article  Google Scholar 

  50. Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK (2000) Dimensionality reduction using genetic algorithms. IEEE Trans Evol Comput 4(2):164–171

    Article  Google Scholar 

  51. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  52. Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sin 20(1):101–148

    MathSciNet  MATH  Google Scholar 

  53. Romero E, Sopena JM, Navarrete G, Alquézar R (2003) Feature selection forcing overtraining may help to improve performance. In: Proceedings of the international joint conference on neural networks, 2003, vol 3. IEEE, Portland, OR, pp 2181–2186

    Google Scholar 

  54. Lambrou T, Kudumakis P, Speller R, Sandler M, Linney A (1998) Classification of audio signals using statistical features on time and wavelet transform domains. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing. vol 6. IEEE, Washington, pp 3621–3624

    Google Scholar 

  55. Smith SW (2003) Digital signal processing: a practical guide for engineers and scientists. Newnes, Oxford

    Google Scholar 

  56. Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Applications of mathematics. Springer, Berlin

    Google Scholar 

  57. Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic Press, Cambridge

    Google Scholar 

  58. Duin RPW, Juszczak P, Paclik P, Pekalska E, de Ridder D, Tax DMJ, Verzakov S (2007) PRTools4.1, A Matlab toolbox for pattern recognition

    Google Scholar 

  59. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Google Scholar 

  60. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  61. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148(3):839–843

    Article  Google Scholar 

  62. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159

    Article  Google Scholar 

  63. Lobo JM, Jiménez-Valverde A, Real R (2007) Auc: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17(2):145–151

    Article  Google Scholar 

  64. Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER (2010) Small-sample precision of ROC-related estimates. Bioinformatics 26(6):822–830

    Article  Google Scholar 

  65. Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77(1):103–123

    Article  Google Scholar 

  66. Rao KVS, Nikitin PV, Lam SF (2005) Antenna design for UHF RFID tags: a review and a practical application. IEEE Trans Antennas Propag 53(12):3870–3876

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed using computational facilities at the College of William and Mary which were provided with the assistance of the National Science Foundation, the Virginia Port Authority, Sun Microsystems, and Virginia’s Commonwealth Technology Research Fund. Partial support for the project is provided by the Naval Research Laboratory and the Virginia Space Grant Consortium. The authors would like to thank Drs. Kevin Rudd and Crystal Bertoncini for their many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Hinders .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, C.A., Hinders, M.K. (2020). Classification of RFID Tags with Wavelet Fingerprinting. In: Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer, Cham. https://doi.org/10.1007/978-3-030-49395-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49395-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49394-3

  • Online ISBN: 978-3-030-49395-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics