Skip to main content

Abstract

Structural health monitoring is a branch of machine learning where we automatically interpret the output of in situ sensors to assess the structural integrity and remaining useful lifetime of engineered systems. Sensors can often be permanently placed in locations that are inaccessible or dangerous, and thus not appropriate for traditional nondestructive evaluation techniques where a technician both performs the inspection and interprets the output of the measurement. Ultrasonic Lamb waves are attractive because they can interrogate large areas of structures with a relatively small number of sensors, but the resulting waveforms are challenging to interpret even though these guided waves have the property that their propagation velocity depends on remaining wall thickness. Wavelet fingerprints provide a method to interpret these complex, multi-mode signals and track changes in arrival time that correspond to thickness loss due to inevitable corrosion, erosion, etc. Guided waves follow any curvature of plates and shells, and will interact with defects and structural features on both surfaces. We show results on samples from aircraft and naval structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Waltham, MA (http://www.olympus-ims.com/en/).

  2. 2.

    Martinez, CA (http://www.ais4ndt.com/).

  3. 3.

    Northborough, MA (http://www.matec.com/).

  4. 4.

    Lockport, IL (http://www.gage-applied.com/).

  5. 5.

    Automated Inspection Systems, Martinez, CA. http://ais4ndt.com/index.html.

References

  1. Lamb H (1917). On waves in an elastic plate. In: Proceedings of the royal society of London series A, Vol. XCIII, pp. 114–128

    Google Scholar 

  2. Worlton DC (1961) Experimental confirmation of lamb waves at megacycle frequencies. J Appl Phys 32(6):967–971

    Google Scholar 

  3. Viktorov IA (1967) Rayleigh and Lamb waves - physical theory and applications. Plenum Press, New York

    Google Scholar 

  4. Graff KE (1991) Wave motion in elastic solids. Dover, New York

    MATH  Google Scholar 

  5. Rose J (1999) Ultrasonic waves in solid media. Cambridge University Press, Cambridge

    Google Scholar 

  6. Rose JL (2002) A baseline and vision of ultrasonic guided wave inspection potential. J Press Vessel Technol 124:273–282

    Google Scholar 

  7. Giurgiutiu V, Cuc A (2005) Embedded nondestructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock Vib Digest 37:83–105

    Google Scholar 

  8. Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295:753–780

    Google Scholar 

  9. Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vib Digest 39(2):91–114

    Google Scholar 

  10. Giurgiutiu V (2007) Damage assessment of structures - an US Air Force office of scientific research structural mechanics perspective. Key Eng Mater 347:69–74

    Google Scholar 

  11. Giurgiutiu V (2010) Structural health monitoring with piezoelectric wafer active sensors - predictive modeling and simulation. INCAS Bull 2(3):31–44

    Google Scholar 

  12. Adams DA (2007) Health monitoring of structural materials and components. Wiley, West Sussex

    Google Scholar 

  13. Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Academic, London

    Google Scholar 

  14. Filho JV, Baptista FG, Inman DJ (2011) Time-domain analysis of piezoelectric impedance-based structural health monitoring using multilevel wavelet decomposition. Mech Syst Signal Process In Press, https://doi.org/10.1016/j.ymssp.2010.12.003

    Article  Google Scholar 

  15. Giridhara G, Rathod VT, Naik S, Roy Mahapatra D, Gopalakrishnan S (2010) Rapid localization of damage using a circular sensor array and Lamb wave based triangulation. Mech Syst Signal Process 24(8):2929–2946. https://doi.org/10.1016/j.ymssp.2010.06.002

    Article  Google Scholar 

  16. Park S, Anton SR, Kim J-K, Inman DJ, Ha DS (2010) Instantaneous baseline structural damage detection using a miniaturized piezoelectric guided waves system. KSCE J Civil Eng 14(6):889–895. https://doi.org/10.1007/s12205-010-1137-x

    Article  Google Scholar 

  17. Wang D, Ye L, Ye L, Li F (2010) A damage diagnostic imaging algorithm based on the quantitative comparison of Lamb wave signals. Smart Mater Struct 19:1–12. https://doi.org/10.1088/0964-1726/19/6/065008

    Article  Google Scholar 

  18. Silva, C., Rocha, B., and Suleman, A. (2009). A structural health monitoring approach based on a PZT network using a tuned wave propagation method. Paper presented at the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, California

    Google Scholar 

  19. Rocha B, Silva C, Suleman A (2010) Structural health monitoring system using piezoelectric networks with tuned lamb waves. Shock Vib 17(4–5):677–695

    Google Scholar 

  20. Wang G, Schon J, Dalenbring M (2009) Use of Lamb wave propagation for SHM and damage detection in sandwich composite aeronautical structures,. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 111–118

    Google Scholar 

  21. Park S, Anton SR, Inman DJ, Kim JK, Ha DS (2009) Instantaneous baseline damage detection using a low power guided waves system. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 505–512

    Google Scholar 

  22. Kim Y-G, Moon H-S, Park K-J, Lee J-K (2011) Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils. NDT E Int 44(2):145–151. https://doi.org/10.1016/j.ndteint.2010.11.006

    Article  Google Scholar 

  23. Chati F, Leon F, El Moussaoui M, Klauson A, Maze G (2011) Longitudinal mode L(0,4) used for the determination of the deposit width on the wall of a pipe. NDT E Int 44(2):188–194. https://doi.org/10.1016/j.ndteint.2010.12.001

    Article  Google Scholar 

  24. Mustapha S, Ye L, Wang D, Ye L (2011) Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency. Compos Struct 93(2):483–491. https://doi.org/10.1016/j.compstruct.2010.08.032

    Article  Google Scholar 

  25. Huang Q, Balogun O, Yang N, Regez B, Krishnaswamy S (2010) Detection of disbonding in glare composites using lamb wave approach. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 11211, pp 1198–1205

    Google Scholar 

  26. Koduru JP, Rose JL (2010) Modified lead titanate/polymer 1–3 composite transducers for structural health monitoring. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1211, pp 1799–1806

    Google Scholar 

  27. Koehler B, Frankenstein B, Schubert F, Barth M (2009) Novel piezoelectric fiber transducers for mode selective excitation and detection of LAMB waves. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 982–989

    Google Scholar 

  28. Advani SK, Breon LJ, Rose JL (2010) Guided wave thickness measurement tool development for estimation of thinning in plate-like structures. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1211, pp 207–214

    Google Scholar 

  29. Kannajosyula H, Puthillath P, Lissenden CJ, Rose JL (2009) Interface waves for SHM of adhesively bonded joints. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 247–254

    Google Scholar 

  30. Chandrasekaran J, Krishnamurthy CV, Balasubramaniam K (2009) Higher order modes cluster (HOMC) guided waves - a new technique for NDT inspection. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 121–128

    Google Scholar 

  31. Ratassepp M, Lowe MJS (2009) SH0 Guided wave interaction with a crack aligned in the propagation direction in a plate. In: Paper presented at the review of progress in QNDE, AIP, conference proceedings, vol 1096, pp 161–168

    Google Scholar 

  32. Masserey B, Fromme P (2009) Defect detection in plate structures using coupled rayleigh-like waves. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 193–200

    Google Scholar 

  33. De Marchi L, Ruzzene M, Buli X, Baravelli E, Speciale N (2010) Warped basis pursuit for damage detection using lamb waves. IEEE Trans Ultrason Ferroelectr Freq Control 57(12):2734–2741. https://doi.org/10.1109/TUFFC.2010.1747

    Article  Google Scholar 

  34. Limongelli MP (2010) Frequency response function interpolation for damage detection under changing environment. Mech Syst Signal Process 24(8):2898–2913. https://doi.org/10.1016/j.ymssp.2010.03.004

    Article  Google Scholar 

  35. Clarke T, Simonetti F, Cawley P (2010) Guided wave health monitoring of complex structures by sparse array systems: influence of temperature changes on performance. J Sound Vib 329(12):2306–2322. Structural Health Monitoring Theory Meets Practice. https://doi.org/10.1016/j.jsv.2009.01.052

  36. De Marchi L, Marzani A, Caporale S, Speciale N (2009) A new warped frequency transformation (WFT) for guided waves characterization. In: Paper presented at health monitoring of structural and biological systems, proceedings of spie - the international society for optical engineering, vol 7295

    Google Scholar 

  37. Xu B, Yu L, Giurgiutiu V (2009) Lamb wave dispersion compensation in piezoelectric wafer active sensor phased-array applications. In: Paper presented at health monitoring of structural and biological systems, proceedings of SPIE - the international society for optical engineering, vol 7295

    Google Scholar 

  38. Engholm M, Stepinski T (2010) Using 2-D arrays for sensing multimodal lamb waves. In: Paper presented at nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security, proceedings of SPIE - the international society for optical engineering, vol 7649

    Google Scholar 

  39. De Marchi L, Ruzzene M, Xu B, Baravelli E, Marzani A, Speciale N (2010) Warped frequency transform for damage detection using lamb waves. In: Paper presented at health monitoring of structural and biological systems, proceedings of SPIE - the international society for optical engineering, vol 7650

    Google Scholar 

  40. Thalmayr F, Hashimoto K-Y, Omori T, Yamaguchi M (2010) Frequency domain analysis of lamb wave scattering and application to film bulk acoustic wave resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57(7):1641–1648. https://doi.org/10.1109/TUFFC.2010.1594

    Article  Google Scholar 

  41. Lu Y, Ye L, Wang D, Wang X, Su Z (2010) Conjunctive and compromised data fusion schemes for identification of multiple notches in an aluminium plate using lamb wave signals. IEEE Trans Ultrason Ferroelectr Freq Control 57(9):2005–2016. https://doi.org/10.1109/TUFFC.2010.1648

  42. Ye L, Ye L, Zhongqing S, Yang C (2008) Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates. NDT E Int 41(1):59–68. https://doi.org/10.1016/j.ndteint.2007.07.003

    Article  Google Scholar 

  43. Moore EZ, Murphy KD, Nichols JM (2011) Crack identification in a freely vibrating plate using Bayesian parameter estimation. Mech Syst Signal Process In Press, https://doi.org/10.1016/j.ymssp.2011.01.016

    Article  Google Scholar 

  44. An Y-K, Sohn H (2010) Instantaneous crack detection under varying temperature and static loading conditions. Struct Control Health Monit 17:730–741. https://doi.org/10.1002/stc.394

    Article  Google Scholar 

  45. Parnell WJ, Martin PA (2011) Multiple scattering of flexural waves by random configurations of inclusions in thin plates. Wave Motion 48(2):161–175. https://doi.org/10.1016/j.wavemoti.2010.10.004

    Article  MathSciNet  MATH  Google Scholar 

  46. Wilcox PD, Velichko A, Drinkwater BW, Croxford AJ, Todd MD (2010) Scattering of plane guided waves obliquely incident on a straight feature with uniform cross-section. J Acoust Soc Am 128:2715–2725. https://doi.org/10.1121/1.3488663

    Article  Google Scholar 

  47. Soni S, Kim SB, Chattopadhyay A (2010) Reference-free fatigue crack detection, localization and quantification in lug joints. In: Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Orlando, Florida

    Google Scholar 

  48. Hall JS, Michaels JE (2009) On a model-based calibration approach to dynamic baseline estimation for structural health monitoring. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 896–903

    Google Scholar 

  49. Sohn H, Kim SB (2010) Development of dual PZT transducers for reference-free crack detection in thin plate structures. IEEE Trans Ultrason Ferroelectr Freq Control 57(1):229–240

    Google Scholar 

  50. Park S, Lee C, Sohn H (2009) Frequency domain reference-free crack detection using transfer impedances in plate structures. In: Paper presented at health monitoring of structural and biological systems, proceedings of SPIE - the international society for optical engineering, vol 7295

    Google Scholar 

  51. Michaels TE, Ruzzene M, Michaelsa JE (2009) Frequency-wavenumber domain methods for analysis of incident and scattered guided wave fields. In: Paper presented at health monitoring of structural and biological systems, proceedings of SPIE - the international society for optical engineering, vol 7295

    Google Scholar 

  52. Lee C, Kim S, Sohn H (2009) Application of a baseline-free damage detection technique to complex structures. In: Paper presented at sensors and smart structures technologies for civil, mechanical, and aerospace systems, proceedings of SPIE - the international society for optical engineering, vol 7292

    Google Scholar 

  53. Ruzzene M, Xu B, Lee SJ, Michaels TE, Michaels JE (2010) Damage visualization via beamforming of frequency-wavenumber filtered wavefield data. In: Paper presented at health monitoring of structural and biological systems ,proceedings of SPIE - the international society for optical engineering, vol 7650

    Google Scholar 

  54. Soni S, Kim SB, Chattopadhyay A (2010) Fatigue crack detection and localization using reference-free method. In: Paper presented at smart sensor phenomena, technology, networks, and systems proceedings of SPIE - the international society for optical engineering, vol 7648

    Google Scholar 

  55. Ayers J, Apetre N, Ruzzene M, Sharma V (2009) Phase gradient-based damage characterization of structures. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 1113–1120

    Google Scholar 

  56. Zhang J, Drinkwater BW, Wilcox PD, Hunter AJ (2010) Defect detection using ultrasonic arrays: the multi-mode total focusing method. NDT E Int 43(2):123–133. ISSN:0963-8695. https://doi.org/10.1016/j.ndteint.2009.10.001

  57. Kang T, Lee D-H, Song S-J, Kim H-J, Jo Y-D, Cho H-J (2011) Enhancement of detecting defects in pipes with focusing techniques, NDT E Int 44(2):178–187. ISSN 0963-8695. https://doi.org/10.1016/j.ndteint.2010.11.009

  58. Higuti RT, Martinez-Graullera O, Martin CJ, Octavio A, Elvira L, De Espinosa FM (2010) Damage characterization using guided- wave linear arrays and image compounding techniques. IEEE Trans Ultrason Ferroelectr Freq Control 57(9):1985–1995. https://doi.org/10.1109/TUFFC.2010.1646

    Article  Google Scholar 

  59. Hall JS, Michaels JE (2010) Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array. IEEE Trans Ultrason Ferroelectr Freq Control 57(10):2311–2323. https://doi.org/10.1109/TUFFC.2010.1692

    Article  Google Scholar 

  60. Kumar A, Poddar B, Kulkarni G, Mitra M, Mujumdar PM (2010) Time reversibility of lamb wave for damage detection in isotropic plate. In: Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Orlando, Florida

    Google Scholar 

  61. Zhao N, Yan S (2011) A new structural health monitoring system for composite plate. Adv Mater Res 183–185:406–410

    Google Scholar 

  62. Zhang H, Cao Y, Yu J, Chen X (2010) Time reversal and cross-correlation analysis for damage detection in plates using lamb waves. In: Paper presented at the 2010 international conference on audio, language and image processing, Shanghai, China, ICALIP 2010 Proceedings, pp 1516–1520

    Google Scholar 

  63. Teramoto K, Uekihara A (2009) Time reversal imaging for gradient sensor networks over the lamb-wave field. In: Paper presented at the ICCAS-SICE 2009 - ICROS-SICE international joint conference, Fukuoka, Japan, Proceedings, pp 2311–2316

    Google Scholar 

  64. Zhao N, Yan S (2010) Experimental research on damage detection of large thin aluminum plate based on lamb wave. In: Paper presented at sensors and smart structures technologies for civil, mechanical, and aerospace systems, proceedings of SPIE - the international society for optical engineering, vol 7647

    Google Scholar 

  65. Bellino A, Fasana A, Garibaldi L, Marchesiello S (2010) PCA-based detection of damage in time-varying systems. Mech Syst Signal Process 24(7) 2010:2250–2260. https://doi.org/10.1016/j.ymssp.2010.04.009. Special Issue: ISMA

  66. Garcia-Rodriguez M, Yanez Y, Garcia-Hernandez MJ, Salazar J, Turo A, Chavez JA (2010) Application of Golay codes to improve the dynamic range in ultrasonic Lamb waves air-coupled systems. NDT E Int 43(8):677–686. https://doi.org/10.1016/j.ndteint.2010.07.005

    Article  Google Scholar 

  67. Kim K-S, Fratta D (2010) Travel-time tomographic imaging: multi-frequency diffraction evaluation of a medium with a high-contrast inclusion. NDT E Int 43(8):695–705. https://doi.org/10.1016/j.ndteint.2010.08.001

    Article  Google Scholar 

  68. Xin F, Shen Q (2011) Fuzzy complex numbers and their application for classifiers performance evaluation. Pattern Recognit 44(7):1403–1417. https://doi.org/10.1016/j.patcog.2011.01.011

    Article  MATH  Google Scholar 

  69. Gutkin R, Green CJ, Vangrattanachai S, Pinho ST, Robinson P, Curtis PT (2011) On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mech Syst Signal Process 25(4):1393–1407. https://doi.org/10.1016/j.ymssp.2010.11.014

    Article  Google Scholar 

  70. Duroux A, Sabra KG, Ayers J, Ruzzene M (2010) Extracting guided waves from cross-correlations of elastic diffuse fields: applications to remote structural health monitoring. J Acoust Soc Am 127:204–215. https://doi.org/10.1121/1.3257602

    Article  Google Scholar 

  71. Kerber F, Sprenger H, Niethammer M, Luangvilai K, Jacobs LJ (2010) Attenuation analysis of lamb waves using the chirplet transform. EURASIP J Adv Signal Process 2010, 6. Article ID 375171. https://doi.org/10.1155/2010/375171

  72. Martinez L, Wilkie-Chancellier N, Glorieux C, Sarens B, Caplain E (2009) Transient space-time surface waves characterization using Gabor analysis paper presented at the anglo french physical acoustics conference. J Phys: Conf Ser 195 012009. https://doi.org/10.1088/1742-6596/195/1/012009

  73. Roellig M, Schubert L, Lieske U, Boehme B, Frankenstein B, Meyendorf N (2010) FEM assisted development of a SHM-piezo-package for damage evaluation in airplane components. In: Paper presented at the 11th international conference on thermal, mechanical and multi-physics simulation, and experiments in microelectronics and microsystems, EuroSimE 2010, Bordeaux, France

    Google Scholar 

  74. Xu H, Xu C, Zhou S (2010) Study of lamb wave propagation in plate for UNDE by 2-D FEM model. In: Paper presented at the 2010 international conference on measuring technology and mechatronics automation, Changsha, China, ICMTMA 2010, vol 3, pp 556–559

    Google Scholar 

  75. Qu W, Xiao L (2009. Finite element simulation of lamb wave with piezoelectric transducers for composite plate damage detection. Adv Mater Res 79–82, 1095–1098

    Google Scholar 

  76. Fromme P (2010) Directionality of the scattering of the A0 lamb wave mode at cracks. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 11211, pp 129–136

    Google Scholar 

  77. Karthikeyan P, Ramdas C, Bhardwa MC, Balasubramaniam K (2009) Non-contact ultrasound based guided lamb waves for composite structure inspection: Some interesting observations. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 928–935

    Google Scholar 

  78. Fromme P (2009) Structural health monitoring of plates with surface features using guided ultrasonic waves. In: Paper presented at health monitoring of structural and biological systems, proceedings of SPIE - the international society for optical engineering, vol 7295

    Google Scholar 

  79. Moreau L, Velichko A, Wilcox PD (2010) Efficient methods to model the scattering of ultrasonic guided waves in 3D. In: Paper presented at Health monitoring of structural and biological systems proceedings of SPIE - the international society for optical engineering, vol 7650

    Google Scholar 

  80. Qu W, Xiao L, Zhou Y (2009) Finite element simulation of Lamb wave with piezoelectric transducers for plastically-driven damage detection. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 737–744

    Google Scholar 

  81. Teramoto K, Uekihara A (2009) The near-field imaging method based on the spatio-temporal gradient analysis. In: Paper presented at the ICCAS-SICE 2009 - ICROS-SICE international joint conference, proceedings, pp 3393–3398

    Google Scholar 

  82. Teramoto K, Tamachi N (2010) Near-field acoustical imaging of cracks over the A0-mode lamb-wave field. In: Paper presented at the SICE annual conference, Proceedings, Taipei, Taiwan, pp 2742–2747

    Google Scholar 

  83. Fellinger P, Marklein R, Langenberg KJ, Klaholz S (1995) Numerical modeling of elastc wave propagation and scattering with EFIT- elastodynamic finite integration technique. Wave Motion 21(1):47–66

    MATH  Google Scholar 

  84. Schubert F, Peiffer A, Kohler B, Sanderson T (1998) The elastodynamic finite integration technique for waves in cylindrical geometries. J Acoust Soc Am 104(5):2604–2614

    Google Scholar 

  85. Schubert F, Koehler B (2001) Three-dimensional time domain modeling of ultrasonic wave propagation in concrete in explicit consideration of aggregates and porosity. J Comput Acoust 9(4):1543–1560

    Google Scholar 

  86. Schubert F (2004) Numerical time-domain modeling of linear and nonlinear ultrasonic wave propagation using finite integration techniques - theory and applications. Ultrasonics 42(1):221–229

    Google Scholar 

  87. Rudd K, Bingham J, Leonard K, Hinders M (2007) Simulation of guided waves in complex piping geometries using the elastodynamic finite integration technique. JASA 121(3):1449–1458

    Google Scholar 

  88. Rudd K, Hinders M (2008) Simulation of incident nonlinear sound beam 3d scattering from complex targets. Comput Acoust 16(3):427–445

    MATH  Google Scholar 

  89. Bingham J, Hinders M (2009) Lamb wave detection of delaminations in large diameter pipe coatings. Open Acoust J 2:75–86

    Google Scholar 

  90. Bingham J, Hinders M (2009) Lamb wave characterization of corrosion-thinning in aircraft stringers: experiment and 3d simulation. JASA 126(1):103–113

    Google Scholar 

  91. Bingham J, Hinders M, Friedman A (2009) Lamb Wave detection of limpet mines on ship hulls. Ultrasonics 49:706–722

    Google Scholar 

  92. Bingham J, Hinders M (2010) 3D Elastodynamic finite integration technique simulation of guided waves in extended built-up structures containing flaws computational acoustics, vol 18, Issue 2, pp 165–192

    Google Scholar 

  93. Bowman JJ, Senior TBA, Uslenghi PLE (1987) Electromagnetic and acoustic scattering by simple shapes. Hemisphere Publishing, New York

    Google Scholar 

  94. Varadan VV, Lakhtakia A, Varadan VK (eds) (1986) Low and high frequency asymptotics. Elsevier Science Publishing, New York

    Google Scholar 

  95. Varadan VV, Lakhtakia A, Varadan VK (eds) (1991) Field representations and introduction to scattering. Elsevier Science Publishing, New York

    Google Scholar 

  96. Mindlin RD In: Yang J (ed) (2006) Introduction to the mathematical theory of vibrations of elastic plates. World Scientific Publishing, Singapore

    Google Scholar 

  97. Takeda N, Takahashi I, Ito Y (2010).Visualization of impact damage in composite structures using pulsed laser scanning method. In: Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Orlando, Florid

    Google Scholar 

  98. Garcia-Rodriguez M, Ya Y, Garcia-Hernandez MJ, Salazar J, Turo A, Chavez JA (2010) Laser interferometric measurements of air-coupled lamb waves. In: Paper presented at the 9th international conference on vibration measurements by laser and non-contact techniques and short course, Ancona, Italy. AIP Conference Proceedings, vol 1253, pp 88–93

    Google Scholar 

  99. Kostson E, Fromme P (2009) Defect detection in multi-layered structures using guided ultrasonic waves. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 209–216

    Google Scholar 

  100. Chunguang X, Rose JL, Yan F, Zhao X (2009) Defect sizing of plate-like structure using Lamb waves. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 1575–1582

    Google Scholar 

  101. Fromme P (2010) Directionality of the scattering of the A0 Lamb wave mode at cracks. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1211, pp 129–136

    Google Scholar 

  102. Schubert L, Lieske U, Kohler B, Frankenstein B (2009) Interaction of Lamb waves with impact damaged CFRP’s -effects and conclusions for acousto-ultrasonic applications. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 151–158

    Google Scholar 

  103. Salas KI, Nadella KS, Cesnik CES (2009) characterization of guided-wave excitation and propagation in composite plates. In: Paper presented at the 7th international workshop on structural health monitoring, California, Stanford, pp 651–658

    Google Scholar 

  104. Zhang H, Sun X, Fan S, Qi X, Liu X, Donghui L (2008) An ultrasonic signal processing technique for extraction of arrival time from Lamb waveforms, advanced intelligent computing theories and applications. Springer Lect Notes Comput Sci 5226(2008):704–711. https://doi.org/10.1007/978-3-540-87442-3-87

    Article  Google Scholar 

  105. Chai HK, Momoki S, Kobayashi Y, Aggelis DG, Shiotani T (2011) Tomographic reconstruction for concrete using attenuation of ultrasound. NDT E Int 44(2):206–215. https://doi.org/10.1016/j.ndteint.2010.11.003

    Article  Google Scholar 

  106. Ramadas C, Balasubramaniam Krishnan, Makarand Joshi CV, Krishnamurthy, (2011) Characterisation of rectangular type delaminations in composite laminates through B- and D-scan images generated using Lamb waves. NDT E Int 44(3):281–289. https://doi.org/10.1016/j.ndteint.2011.01.002

  107. Belanger P, Cawley P, Simonetti F (2010) Guided wave diffraction tomography within the born approximation. IEEE Trans Ultrason Ferroelectr Freq Control 57(6):1405–1418. https://doi.org/10.1109/TUFFC.2010.1559

  108. Wu1 C-H, Yang C-H (2010) An investigation on ray tracing algorithms in Lamb wave tomography. In: Paper presented at the 31st symposium on ultrasonic electronics, Proceedings, vol 31, Tokyo Japan, pp 483–484

    Google Scholar 

  109. Hu Y, Xu C, Xu H (2009) The application of wavelet transform for lamb wave tomography. In: Paper presented at the 1st international conference on information science and engineering, Nanjing, China. ICISE 2009, pp 681–683

    Google Scholar 

  110. Lissenden CJ, Cho H, Kim CS (2010) Fatigue crack growth monitoring of an aluminum joint structure. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1211, pp 1868–1875

    Google Scholar 

  111. Balvantin A, Baltazar A, Kim J (2010) Ultrasonic lamb wave tomography of non-uniform interfacial stiffness between contacting solid bodies. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1211, pp 1463–1470

    Google Scholar 

  112. Xu C, Rose JL, Yan F, Zhao X (2009) Defect sizing of plate-like structure using lamb waves. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 1575–1582

    Google Scholar 

  113. Ng CT, Veidt M, Rajic N (2009) Integrated piezoceramic transducers for imaging damage in composite laminates. In: Paper presented at the second international conference on smart materials and nanotechnology in engineering, Proceedings of SPIE - the international society for optical engineering, vol 7493

    Google Scholar 

  114. McKeon J, Hinders M (1999) Parallel projection and crosshole Lamb wave contact scanning tomography. J Acoust Soc Am 106(5):2568–2577

    Google Scholar 

  115. McKeon J, Hinders M (1999) Lamb Wave scattering from a through hole. J Sound Vib 224(2):843–862

    Google Scholar 

  116. Malyarenko E, Hinders M (2000) Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures. J Acous Soc Am 108(10):1631–1639

    Google Scholar 

  117. Malyarenko E, Hinders M (2001) Ultrasonic Lamb wave diffraction tomography. Ultrasonics 39(4):269–281

    MATH  Google Scholar 

  118. Hinders M, Malyarenko E, Leonard K (2002) Blind test of Lamb wave diffraction tomography. In: Thompson DO, Chimenti DE (eds) Reviews of progress in QNDE, vol 21, AIP CP 615, pp 278–283

    Google Scholar 

  119. Leonard K, Malyarenko E, Hinders M (2002) Ultrasonic Lamb wave tomography. Inverse Prob Special NDE Issue 18(6):1795–1808

    MathSciNet  MATH  Google Scholar 

  120. Leonard K, Hinders M (2003) Guided wave helical ultrasonic tomography of pipes. JASA 114(2):767–774

    Google Scholar 

  121. Hou J, Leonard KR, Hinders M (2004) Automatic multi-mode Lamb wave arrival time extraction for improved tomographic reconstruction. Inverse Prob 20:1873–1888

    MathSciNet  MATH  Google Scholar 

  122. Hinders M, Leonard KR (2005) Lamb wave tomography of pipes and tanks using frequency compounding. In: Thompson DO, Chimenti DE (eds) Reviews of progress in QNDE, vol 24, pp 867-874

    Google Scholar 

  123. Hinders M, Hou J, Leonard KR (2005) Multi-mode Lamb wave arrival time extraction for improved tomographic reconstruction. In: Thompson DO, Chimenti DE (eds) Reviews of progress in QNDE, vol 24, pp 736–743

    Google Scholar 

  124. Leonard K, Hinders M (2005) Multi-mode Lamb wave tomography with arrival time sorting. JASA 117(4):2028–2038

    Google Scholar 

  125. Leonard K, Hinders M (2005) Lamb wave tomography of pipe-like structures Ultrasonics 44(7):574–583

    Google Scholar 

  126. Griffin DR (1958) Listening in the dark: the acoustic orientation of bats and men. Yale University Press, New Haven

    Google Scholar 

  127. L. Cohen, (1995). Time-frequency analysis, Prentice-Hall signal processing series

    Google Scholar 

  128. Deubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics

    Google Scholar 

  129. Abbate A, Koay J, Frankel J, Schroeder SC, Das P (1994) Application of wavelet transform signal processor to ultrasound. In: Paper presented at the IEEE Ultrasonics Symposium, pp 1147–1152

    Google Scholar 

  130. Masscotte D, Goyette J, Bose TK (2000) Wavelet-transorm-based method of analysis for lamb-wave ultrasonic nde signals. IEEE Trans Instrum Meas 49(3):524–529

    Google Scholar 

  131. Perov DV, Rinkeich AB, Smorodinskii YG (2002) Wavelet filtering of signals for ultrasonic flaw detector. Russ J Nondestr Test 38(12):869–882

    Google Scholar 

  132. Lou HW, Guang Rui H (2003) An approach based on simplified klt and wavelet transform for enhancing speech degraded by non-stationary wideband noise. J Sound Vib 268:717–729

    Google Scholar 

  133. Zou J, Chen J (2004) A comparative study on time-frequency fracture of cracked rotor by Wigner-Ville distribution and wavelet transform. J Sound Vib 276:1–11

    Google Scholar 

  134. Hou J, Hinders MK (2002) Dynamic wavelet fingerprint identification of ultrasound signals. Mater Eval 60(9):1089–1093

    Google Scholar 

  135. Hinders M, Bingham J, Jones KR, Leonard K (2006) Wavelet thumbprint analysis of TDR signals for wiring flaw detection. In: Thompson DO, Chimenti DE (eds) Reviews of progress in QNDE, vol 25, pp 641–648

    Google Scholar 

  136. Hinders M, Hou J, McKeon JCP (2005) Ultrasonic inspection of thin multilayers. In: Thompson DO, Chimenti DE (eds) Reviews of progress in QNDE vol 24, pp 1137–1144

    Google Scholar 

  137. Ghorayeb SR, Bertoncini CA, Hinders MK (2008) Ultrasonography in Dentistry: A Review IEEE Transactions on Ultrasonics. Ferroelectrics and Frequency Control 55(6):1256–1266

    Google Scholar 

  138. Al-Badour F, Sunar M, Cheded L (2011) Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mech Syst Signal Process In Press. https://doi.org/10.1016/j.ymssp.2011.01.017

  139. Hein H, Feklistova L (2011) Computationally efficient delamination detection in composite beams using Haar wavelets. Mech Syst Signal Process In Press. https://doi.org/10.1016/j.ymssp.2011.02.003

  140. Li H, Zhang Y, Zheng H (2011) Application of Hermitian wavelet to crack fault detection in gearbox. Mech Syst Signal Process 25(4):1353–1363. https://doi.org/10.1016/j.ymssp.2010.11.008

    Article  MathSciNet  Google Scholar 

  141. Wang X, Zi Y, He Z (2011) Multiwavelet denoising with improved neighboring coefficients for application on rolling bearing fault diagnosis. Mech Syst Signal Process 25(1):285–304. https://doi.org/10.1016/j.ymssp.2010.03.010

    Article  Google Scholar 

  142. Jiang X, Mahadevan S (2011) Wavelet spectrum analysis approach to model validation of dynamic systems. Mech Syst Signal Process 25(2):575–590. https://doi.org/10.1016/j.ymssp.2010.05.012

    Article  Google Scholar 

  143. Kim JH, Kwak H-G (2011) Rayleigh wave velocity computation using principal wavelet-component analysis. NDT E Int 44(1):47–56. https://doi.org/10.1016/j.ndteint.2010.09.005

    Article  Google Scholar 

  144. Jin X, Gupta S, Mukherjee K, Ray A (2011) Wavelet-based feature extraction using probabilistic finite state automata for pattern classification. Pattern Recognit 44(7):1343–1356. https://doi.org/10.1016/j.patcog.2010.12.003

    Article  MATH  Google Scholar 

  145. Acciani G, Brunetti G, Fornarelli G, Giaquinto A (2010) Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification. Ultrasonics 50(1):13–25. https://doi.org/10.1016/j.ultras.2009.07.003

    Article  Google Scholar 

  146. Jha R, Watkins R (2009) Lamb wave based diagnostics of composite plates using a modified time reversal method. In: Paper presented at the 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Palm Springs, California

    Google Scholar 

  147. Rathod VT, Panchal M, Mahapatra DR, Gopalakrishnan S (2009) Lamb wave based sensor network for identification of damages in plate structures. In: Paper presented at the 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Palm Springs, California

    Google Scholar 

  148. Du C, Ni Q, Natsuki T (2010) Determination of vibration source locations in laminated composite plates using lamb wave analysis. Adv Mater Res 79–82:1181–1184

    Google Scholar 

  149. Raghuram V, Shukla R, Pramila T (2010) Studies on Lamb waves in long aluminium plates generated using laser based ultrasonics. In: Paper presented at the 9th international conference on vibration measurements by laser and non-contact techniques and short course, AIP conference proceedings, vol 1253, pp 100–105

    Google Scholar 

  150. Rathod VT, Mahapatra DR, Gopalakrishnan S (2009) Lamb wave based identification and parameter estimation of corrosion in metallic plate structure using a circular PWAS array. In: Paper presented at health monitoring of structural and biological systems, Proceedings of SPIE - the international society for optical engineering, vol 7295

    Google Scholar 

  151. Song F, Huang GL, Hu GK (2009) Online debonding detection in honeycomb sandwich structures using multi-frequency guided waves. In: Paper presented at the second international conference on smart materials and nanotechnology in engineering, Proceedings of SPIE - the international society for optical engineering, vol 7493

    Google Scholar 

  152. Hinders MK, Bingham JP (2010) Lamb wave pipe coating disbond detection using the dynamic wavelet fingerprinting technique. In: Paper presented at the review of progress in QNDE AIP conference proceedings, vol 1211, pp 615–622

    Google Scholar 

  153. Bingham JP, Hinders MK (2010) Automatic multimode guided wave feature extraction using wavelet fingerprints. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1211, pp 623–630

    Google Scholar 

  154. Treesatayapun C, Baltazar A, Balvantin A, Kim J (2009) Thickness determination of a plate with varying thickness using an artificial neural network for time-frequency representation of Lamb waves. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 619–626

    Google Scholar 

  155. Yu L, Wang J, Giurgiutiu V, Shin Y (2010) Corrosion detection/quantification on thin-wall structures using multimode sensing combined with statistical and time-frequency analysis. In: Paper presented at the ASME international mechanical engineering congress and exposition, proceedings, vol 14, pp 251–257

    Google Scholar 

  156. Bao P., Yuan, M., and Fu, Z. (2009). Research on monitoring technology of bolt tightness degree based on wavelet analysis. In: Paper presented at the ICEMI 2009 - proceedings of 9th international conference on electronic measurement and instruments, pp 4329–4333

    Google Scholar 

  157. Martinez L, Wilkie-Chancellier N, Glorieux C, Sarens B, Caplain E (2009) Transient space-time surface waves characterization using Gabor analysis. In: Paper presented at the Anglo -French physical acoustics conference. J Phys: Conf Ser 195:1–9

    Google Scholar 

  158. Michaels TE, Ruzzene M, Michaels JE (2009) Incident wave removal through frequency-wavenumber filtering of full wavefield data. In: Paper presented at the review of progress in QNDE, AIP conference proceedings, vol 1096, pp 604–611

    Google Scholar 

  159. Hanhui X, Chunguang X, Shiyuan Z, Yong H (2009) Time-frequency analysis for nonlinear lamb wave signal. In: Paper presented at the 2nd international congress on image and signal processing, CISP’09, Tianjin, China

    Google Scholar 

  160. Feldman M (2011) Hilbert transform in vibration analysis. Mech Syst Signal Process 25(3):735–802. https://doi.org/10.1016/j.ymssp.2010.07.018

    Article  Google Scholar 

  161. Li C, Wang X, Tao Z, Wang Q, Shuanping D (2011) Extraction of time varying information from noisy signals: an approach based on the empirical mode decomposition. Mech Syst Signal Process 25(3):812–820. https://doi.org/10.1016/j.ymssp.2010.10.007

    Article  Google Scholar 

  162. Yoo B, Pines DJ, Purekar AS, Zhang Y (2010) Piezoelectric paint based 2-D sensor array for detecting damage in aluminum plate. In: Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Orlando, Florida

    Google Scholar 

  163. Yuan M, Fu Z, Bao P (2009) Detection of bolt tightness degree based on HHT. In: Proceedings of 9th international conference on electronic measurement and instruments, paper presented at ICEMI 2009, Beijing, China, pp 4334–4337

    Google Scholar 

  164. Haiyan Z, Xiuli S, Zhidong S, Yueyu X (2009) Group velocity measurement of piezo-actuated lamb waves using hilbert-huang transform method. In: Paper presented at the proceedings of the 2nd international congress on image and signal processing, CISP’09, Tianjin, China

    Google Scholar 

  165. Martinez L, Wilkie-Chancellier N, Glorieux C, Sarens B, Caplain E (2009) Transient space-time surface waves characterization using gabor analysis paper presented at the Anglo–french physical acoustics conference. J Phys: Conf Ser 195:012009. https://doi.org/10.1088/1742-6596/195/1/012009

  166. Xu B, Giurgiutiu V, Yu L (2009) Lamb waves decomposition and mode identification using matching pursuit method. In: Paper presented at sensors and smart structures technologies for civil, mechanical, and aerospace systems, proceedings of SPIE - the international society for optical engineering, vol 7292

    Google Scholar 

  167. Cole SA (2001) Suspect identities: a history of fingerprinting and criminal identification. Harvard University Press, Cambridge

    Google Scholar 

  168. Varitz R (2007) Wavelet transform and pattern recognition method for heart sound analysis. United States Patent 20070191725

    Google Scholar 

  169. Aussem A, Campbell J, Murtagh F (1998) Wavelet-based feature extraction and decomposition strategies for financial forecasting. J Comp Int Financ 6(2):5–12

    Google Scholar 

  170. Tang YY, Yang LH, Liu J, Ma H (2000) Wavelet theory and its application to pattern recognition. World Scientific, River Edge

    MATH  Google Scholar 

  171. Brooks RR, Grewe L, Iyengar SS (2001) Recognition in the wavelet domain: a survey. J Electron Imag 10(3):757–784

    Google Scholar 

  172. Nason GP, Silverman BW (1995) The stationary wavelet transform and some statistical applications. In: Oppenheim G Antoniadis A (ed) Wavelets and statistics. Lecture notes in statistics. Springer, pp 281–299

    Google Scholar 

  173. Pittner S, Kamarthi SV (1999) Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Trans Pattern Anal Mach Intel 21(1):83–88

    Google Scholar 

  174. Sabatini AM (2001) A digital-signal-processing technique for ultrasonic signal modeling and classification. IEEE Trans Instrum Meas 50(1):15–21

    Google Scholar 

  175. Coifman R, Wickerhauser M (1992) Entropy based algorithms for best basis selection. IEEE Trans Inform Theory 38:713–718

    MATH  Google Scholar 

  176. Szu HH, Telfer B, Kadambe S (1992) Neural network adaptive wavelets for signal representation and classification. Opt Eng 31:1907–1916

    Google Scholar 

  177. Telfer BA, Szu HH, Dobeck GJ, Garcia JP, Ko H, Dubey A, Witherspoon N (1994) Adaptive wavelet classification of acoustic and backscatter and imagery. Opt Eng 33: 2,192–2,203

    Google Scholar 

  178. Mallet Y, Coomans D, Kautsky J, De Vel O (1997) Classification using adaptive wavelets for feature extraction. IEEE Trans Pattern Anal Mach Intel 19:1058–1066

    Google Scholar 

  179. Mallat S (1989) A theory for multiresolution signal processing: the wavelet representation. IEEE Trans Pattern Anal Mach Intel 11:674–693

    MATH  Google Scholar 

  180. Antoine J-P, Barachea D, Cesar RM Jr, da Fontoura CL (1997) Shape characterization with the wavelet transform. Sig Process 62(3):265–290

    MATH  Google Scholar 

  181. Yeh C-H (2003) Wavelet-based corner detection using eigenvectors of covariance matrices. Pattern Recognit Lett 24(15):2797–2806

    Google Scholar 

  182. Chapa JO, Raghuveer MR (1995) Optimal matched wavelet construction and its application to image pattern recognition. Proc SPIE 2491(1):518–529

    Google Scholar 

  183. Liang J, Parks TW (1996) A translation-invariant wavelet representation algorithm with applications. IEEE Trans Sig Process 44(2):225–232

    Google Scholar 

  184. Maestre RA, Garcia J, Ferreira C (1997) Pattern recognition using sequential matched filtering of wavelet coefficients. Opt Commun 133:401–414

    Google Scholar 

  185. Murtagh F, Starck J-L, Berry MW (2000) Overcoming the curse of dimensionality in clustering by means of the wavelet transform. Comput J 43(2):107–120

    Google Scholar 

  186. Yu T, Lam ECM, Tang YY (2001) Feature extraction using wavelet and fractal. Pattern Recognit Lett 22:271–287

    MATH  Google Scholar 

  187. Tsai D-M, Chiang C-H (2002) Rotation-invariant pattern matching using wavelet decomposition. Pattern Recognit Lett 23(1–3):191–201

    MATH  Google Scholar 

  188. Du T, Lim KB, Hong GS, Yu WM, Zheng H (2004) 2D occluded object recognition using wavelets. In: 4th international conference on computer and information technology, pp 227–232. https://doi.org/10.1109/CIT.2004.1357201

  189. Saito N, Coifman RR (1994) Local discriminant bases. Proc SPIE 2303(2):2–14. https://doi.org/10.1117/12.188763

    Article  Google Scholar 

  190. Livens S, Scheunders P, de Wouwer GV, Dyck DV, Smets H, Winkelmans J, Bogaerts W (1995) Classification of corrosion images by wavelet signatures and LVQ networks. In: Hlavác V, Sára R (eds) Computer analysis of images and patterns V. Springer, Berlin, pp 538–543

    Google Scholar 

  191. Tansel IN, Mekdeci C, Rodriguez O, Uragun B (1993) Monitoring drill conditions with wavelet based encoding and neural networks. Int J Mach Tool Manu 33:559–575

    Google Scholar 

  192. Tansel IN, Mekdeci C, McLaughlin C (1995) Detection of tool failure in end milling with wavelet transformations and neural networks (WT-NN). Int J Mach Tool Manu 35:1137–1147

    Google Scholar 

  193. Learned RE, Wilsky AS (1995) A wavelet packet approach to transient signal classification. Appl Comput Harmon A 2:265–278

    MATH  Google Scholar 

  194. Wu Y, Du R (1996) Feature extraction and assessment using wavelet packets for monitoring of machining processes. Mech Syst Signal Process 10:29–53

    Google Scholar 

  195. Case TJ, Waag RC (1996) Flaw identification from time and frequency features of ultrasonic waveforms. IEEE Trans Ultrason Ferr Freq Cont 43(4):592–600

    Google Scholar 

  196. Drai R, Khelil N, Benchaala A (2002) Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT E Int 35(8):567–572

    Google Scholar 

  197. Buonsanti M, Cacciola M, Calcagno S, Morabito FC, Versaci M (2006) Ultrasonic pulse-echoes and eddy current testing for detection, recognition and characterisation of flaws detected in metallic plates. In: Proceedings of 9th European conference on non-destructive testing, Berlin, Germany

    Google Scholar 

  198. Momenan R, Loew MH, Insana MF, Wagner RF, Garra BS (1990) Application of pattern recognition techniques in ultrasound tissue characterization. In: Proceedings of 10th international conference on pattern recognition, vol 1, pp 608–612

    Google Scholar 

  199. Bankman IN, Johnson KO, Schneider W (1993) Optimal detection, classification, and superposition resolution in neural waveform recordings. IEEE Trans Biomed Eng 40(8):836–841

    Google Scholar 

  200. Kalayci T, Özdamar Ö (1995) Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng Med Biol 14:160–166

    Google Scholar 

  201. Tate R, Watson D, Eglen S (1995) Using wavelets for classifying human in vivo Magnetic Resonance spectra. In: Antoniadis A, Oppenheim G (eds) Wavelets and statistics. Springer, New York, pp 377–383

    Google Scholar 

  202. Mojsilovic A, Popovic MV, Neskovic AN, Popovic AD (1995) Wavelet image extension for analysis and classification of infarcted myocardial tissue. IEEE Trans Biomed Eng 44(9):856–866

    Google Scholar 

  203. Georgiou G, Cohen FS (2001) Tissue characterization using the continuous wavelet transform. I. Decomposition method. IEEE Trans Ultrason Ferr Freq Cont 48(2): 355–363

    Google Scholar 

  204. Georgiou G, Cohen FS, Piccoli CW, Forsberg F, Goldberg BB (2001) Tissue characterization using the continuous wavelet transform. II. Application on breast RF data. IEEE Trans Ultrason Ferr Freq Cont 48(2): 364–373

    Google Scholar 

  205. Lee W-L, Chen Y-C, Hsieh K-S (2003) Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans Med Imag 22(3):382–392

    Google Scholar 

  206. Alacam B, Yazici B, Bilgutay N, Forsberg F, Piccoli C (2004) Breast tissue characterization using FARMA modeling of ultrasonic RF echo. Ultrasound Med Biol 30(10):1397–1407

    Google Scholar 

  207. Bertoncini C, Hinders M (2010) Fuzzy classification of roof fall predictors in microseismic monitoring measurement, vol 43, pp 1690–1701. https://doi.org/10.1016/j.measurement.2010.09.015

  208. Fehlman W, Hinders M (2009) Mobile robot navigation with intelligent infrared image interpretation. Springer tracts in advanced robotics. Springer, Berlin

    Google Scholar 

  209. Cara Leckey, M. Rogge, C. Miller and M. Hinders, Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique. Ultrasonics 52(2), 193–344 (2012). https://doi.org/10.1016/j.ultras.2011.08.003

  210. DO Thompson, DE Chimenti (eds) (2012) 3D simulations for the investigation of lamb wave scattering from flaws, review of progress in quantitative nondestructive evaluation, vol 31. In: AIP Conference Proceedings, vol 1430, pp 111–117. https://doi.org/10.1063/1.4716220

  211. Miller C, Hinders M (2012) Flaw detection and characterization using lamb wave tomography and pattern classification review of progress in quantitative nondestructive evaluation. In: Thompson DO, Chimenti DE (eds) AIP conference proceedings, vol 31, pp 1430, 663–670. https://doi.org/10.1063/1.4716290

  212. Miller C, Hinders M (2014) Classification of flaw severity using pattern recognition for guided wave-based structural health monitoring. Ultrasonics 54:247–258. https://doi.org/10.1016/j.ultras.2013.04.020

    Article  Google Scholar 

  213. Miller C, Hinders M (2014) Multiclass feature selection using computational homology for Lamb wave-based damage characterization. J Intell Mater Syst Struct 25:1511. https://doi.org/10.1177/1045389X13508335

    Article  Google Scholar 

  214. Miller C, Hinders M (2014) Intelligent feature selection techniques for pattern classification of Lamb wave signals. In: AIP conference proceedings of review of progress in quantitative nondestructive evaluation, vol 1581, p 294. https://doi.org/10.1063/1.4864833

  215. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  216. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Computer science and scientific computing. Academic, Boston

    MATH  Google Scholar 

  217. Kuncheva LI (2004) Combining pattern classifiers. Wiley, New York

    MATH  Google Scholar 

  218. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  219. Webb AR (2012) Statistical pattern recognition. Wiley, New York

    Google Scholar 

  220. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  221. Nagy G (1968) State of the art in pattern recognition. Proc IEEE 56(5):836–863

    Google Scholar 

  222. Kanal L (1974) Patterns in pattern recognition: 1968–1974. IEEE Trans Inf Theory 20(6):697–722

    MathSciNet  MATH  Google Scholar 

  223. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Google Scholar 

  224. Watanabe S (1985) Pattern recognition: human and mechanical. Wiley-Interscience Publication, Wiley

    Google Scholar 

  225. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97(1):245–271

    MathSciNet  MATH  Google Scholar 

  226. Jain AK, Chandrasekaran B (1982) Dimensionality and sample size considerations in pattern recognition practice. In: Krishnaiah PR, Kanal LN (eds) Classification pattern recognition and reduction of dimensionality. Handbook of statistics, vol 2. Elsevier, pp 835–855

    Google Scholar 

  227. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Google Scholar 

  228. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(1–4):131–156

    Google Scholar 

  229. Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK (2000) Dimensionality reduction using genetic algorithms. IEEE Trans Evol Comput 4(2):164–171

    Google Scholar 

  230. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  231. Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sin 20(1):101–148

    MathSciNet  MATH  Google Scholar 

  232. Romero E, Sopena JM,  Navarrete G, Alquézar R (2003) Feature selection forcing overtraining may help to improve performance. In: 2003 Proceedings of the international joint conference on neural networks, vol 3. IEEE, pp 2181–2186

    Google Scholar 

  233. Learned RE, Willsky AS (1995) A wavelet packet approach to transient signal classification. Appl Comput Harmon Anal 2(3):265–278

    MATH  Google Scholar 

  234. Yen GG, Lin KC (2000) Wavelet packet feature extraction for vibration monitoring. IEEE Trans Ind Electron 47(3):650–667

    Google Scholar 

  235. Jin X, Gupta S, Mukherjee K, Ray A (2011) Wavelet-based feature extraction using probabilistic finite state automata for pattern classification. Pattern Recognit 44(7):1343–1356

    MATH  Google Scholar 

  236. Gaul L, Hurlebaus S (1999) Wavelet-transform to identify the location and force-time-history of transient load in a plate. In: Chang F-K (ed) Structural health monitoring. Technomic Publishing Co, Lancaster, pp 851–860

    Google Scholar 

  237. Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR, Czarnecki JJ (2004) A review of structural health monitoring literature: 1996-2001. Technical report, Los Alamos National Laboratory, Los Alamos, NM. Report Number LA-13976-MS

    Google Scholar 

  238. Lee C, Park S (2011) Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology. Smart Mater Struct 20(11):115002–115010

    Google Scholar 

  239. Min J, Park S, Yun CB, Lee CG, Lee C (2012) Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Eng Struct 39:210–220

    Google Scholar 

  240. Sohn H, Farrar CR, Hunter NF, Worden K (2001) Structural health monitoring using statistical pattern recognition techniques. J Dyn Syst Meas Contr 123(4):706–711

    Google Scholar 

  241. Biemans C, Staszewski WJ, Boller C, Tomlinson GR (1999) Crack detection in metallic structures using piezoceramic sensors. Key Eng Mater 167:112–121

    Google Scholar 

  242. Legendre S, Massicotte D, Goyette J, Bose TK (2000) Wavelet-transform-based method of analysis for Lamb-wave ultrasonic NDE signals. IEEE Trans Instrum Meas 49(3):524–530

    Google Scholar 

  243. Zou J, Chen J (2004) A comparative study on time-frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform. J Sound Vib 276(1):1–11

    Google Scholar 

  244. Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vib Dig 39(2):91–114

    Google Scholar 

  245. Harris D (2006) The influence of human factors on operational efficiency. Aircr Eng Aerosp Technol 78(1):20–25

    Google Scholar 

  246. Marsh G (2006) Duelling with composites. Reinf Plast 50(6):18–23

    Google Scholar 

  247. Bowermaster D (2006) Alaska isn’t the only airline with ground-safety troubles. http://seattletimes.com/html/businesstechnology/2002750657_alaska20.html

  248. Zhang R, Knight SP, Holtz RL, Goswami R, Davies CHJ, Birbilis N (2016) A survey of sensitization in 5xxx series aluminum alloys. Corrosion 72(2):144–159. https://doi.org/10.5006/1787

    Article  Google Scholar 

  249. Li F, Xiang D, Qin Y, Pond RB, Slusarski K (2011) Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound. Ultrasonics 51(5), 561–570. https://doi.org/10.1016/j.ultras.2010.12.009, ISSN 0041-624X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Hinders .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hinders, M.K., Miller, C.A. (2020). Intelligent Structural Health Monitoring with Ultrasonic Lamb Waves. In: Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer, Cham. https://doi.org/10.1007/978-3-030-49395-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49395-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49394-3

  • Online ISBN: 978-3-030-49395-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics