Skip to main content

The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche)

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1273))

Abstract

Hematopoietic stem cells (HSCs) rely on instructive cues from the marrow microenvironment for their maintenance and function. Accumulating evidence indicates that the survival and proliferation of hematopoietic neoplasms are dependent not only on cell-intrinsic, genetic mutations, and other molecular alterations present within neoplastic stem cells, but also on the ability of the surrounding microenvironmental cells to nurture and promote the malignancy. It is anticipated that a better understanding of the molecular and cellular events responsible for these microenvironmental features of neoplastic hematopoiesis will lead to improved treatment for patients. This review will focus on the myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), in which an acquired signaling kinase mutation (JAK2V617F) plays a central, pathogenetic role in 50–100% of patients with these disorders. Evidence is presented that the development of an MPN requires both an abnormal, mutation-bearing (i.e., neoplastic) HSC and an abnormal, mutation-bearing microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  CAS  Google Scholar 

  2. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    Article  CAS  Google Scholar 

  3. Greenbaum A, Hsu YM, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    Article  CAS  Google Scholar 

  4. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13:102–116

    Article  CAS  Google Scholar 

  5. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168

    Article  CAS  Google Scholar 

  6. Bruns I, Lucas D, Pinho S et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20:1315–1320

    Article  CAS  Google Scholar 

  7. Zhao M, Perry JM, Marshall H et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20:1321–1326

    Article  CAS  Google Scholar 

  8. Asada N, Kunisaki Y, Pierce H et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19:214–223

    Article  CAS  Google Scholar 

  9. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  Google Scholar 

  10. Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T (2014) Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun 454:353–357

    Article  CAS  Google Scholar 

  11. Heazlewood SY, Neaves RJ, Williams B, Haylock DN, Adams TE, Nilsson SK (2013) Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res 11:782–792

    Article  CAS  Google Scholar 

  12. Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T (2015) CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 212:2133–2146

    Article  CAS  Google Scholar 

  13. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  Google Scholar 

  14. Acar M, Kocherlakota KS, Murphy MM et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130

    Article  CAS  Google Scholar 

  15. Zhao M, Ross JT, Itkin T et al (2012) FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood 120:1831–1842

    Article  CAS  Google Scholar 

  16. Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  Google Scholar 

  17. Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  Google Scholar 

  18. Winkler IG, Sims NA, Pettit AR et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828

    Article  CAS  Google Scholar 

  19. Ludin A, Itkin T, Gur-Cohen S et al (2012) Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13:1072–1082

    Article  CAS  Google Scholar 

  20. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    Article  CAS  Google Scholar 

  21. Yamazaki S, Ema H, Karlsson G et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158

    Article  CAS  Google Scholar 

  22. Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:261–271

    Article  CAS  Google Scholar 

  23. Walkley CR, Olsen GH, Dworkin S et al (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129:1097–1110

    Article  CAS  Google Scholar 

  24. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129:1081–1095

    Article  CAS  Google Scholar 

  25. Kim YW, Koo BK, Jeong HW et al (2008) Defective notch activation in microenvironment leads to myeloproliferative disease. Blood 112:4628–4638

    Article  CAS  Google Scholar 

  26. Raaijmakers MH, Mukherjee S, Guo S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857

    Article  CAS  Google Scholar 

  27. Kode A, Manavalan JS, Mosialou I et al (2014) Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 506:240–244

    Article  CAS  Google Scholar 

  28. Mager LF, Riether C, Schurch CM et al (2015) IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J Clin Invest 125:2579–2591

    Article  Google Scholar 

  29. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R (2009) The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood 113:5246–5249

    Article  CAS  Google Scholar 

  30. Rosti V, Villani L, Riboni R et al (2013) Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood 121:360–368

    Article  CAS  Google Scholar 

  31. Helman R, Pereira WO, Marti LC et al (2018) Granulocyte whole exome sequencing and endothelial JAK2V617F in patients with JAK2V617F positive Budd-Chiari Syndrome without myeloproliferative neoplasm. Br J Haematol 180:443–445

    Article  Google Scholar 

  32. Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  CAS  Google Scholar 

  33. Teofili L, Martini M, Iachininoto MG et al (2011) Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood 117:2700–2707

    Article  CAS  Google Scholar 

  34. Sozer S, Ishii T, Fiel MI et al (2009) Human CD34+ cells are capable of generating normal and JAK2V617F positive endothelial like cells in vivo. Blood Cells Mol Dis 43:304–312

    Article  CAS  Google Scholar 

  35. Piaggio G, Rosti V, Corselli M et al (2009) Endothelial colony-forming cells from patients with chronic myeloproliferative disorders lack the disease-specific molecular clonality marker. Blood 114:3127–3130

    Article  CAS  Google Scholar 

  36. Streubel B, Chott A, Huber D et al (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259

    Article  CAS  Google Scholar 

  37. Fang B, Zheng C, Liao L et al (2005) Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics. Blood 105:2733–2740

    Article  CAS  Google Scholar 

  38. Rigolin GM, Fraulini C, Ciccone M et al (2006) Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood 107:2531–2535

    Article  CAS  Google Scholar 

  39. Schepers K, Pietras EM, Reynaud D et al (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13:285–299

    Article  CAS  Google Scholar 

  40. Arranz L, Sanchez-Aguilera A, Martin-Perez D et al (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512:78–81

    Article  CAS  Google Scholar 

  41. Zhang B, Ho YW, Huang Q et al (2012) Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21:577–592

    Article  CAS  Google Scholar 

  42. Schmidt T, Kharabi Masouleh B, Loges S et al (2011) Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell 19:740–753

    Article  CAS  Google Scholar 

  43. Krevvata M, Silva BC, Manavalan JS et al (2014) Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood 124:2834–2846

    Article  CAS  Google Scholar 

  44. Ciurea SO, Merchant D, Mahmud N et al (2007) Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 110:986–993

    Article  CAS  Google Scholar 

  45. Medinger M, Skoda R, Gratwohl A et al (2009) Angiogenesis and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol 146:150–157

    Article  CAS  Google Scholar 

  46. Boveri E, Passamonti F, Rumi E et al (2008) Bone marrow microvessel density in chronic myeloproliferative disorders: a study of 115 patients with clinicopathological and molecular correlations. Br J Haematol 140:162–168

    Google Scholar 

  47. Gianelli U, Vener C, Raviele PR et al (2007) VEGF expression correlates with microvessel density in Philadelphia chromosome-negative chronic myeloproliferative disorders. Am J Clin Pathol 128:966–973

    Article  Google Scholar 

  48. Zetterberg E, Vannucchi AM, Migliaccio AR et al (2007) Pericyte coverage of abnormal blood vessels in myelofibrotic bone marrows. Haematologica 92:597–604

    Article  Google Scholar 

  49. Tiedt R, Hao-Shen H, Sobas MA et al (2008) Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:3931–3940

    Article  CAS  Google Scholar 

  50. Constien R, Forde A, Liliensiek B et al (2001) Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30:36–44

    Article  CAS  Google Scholar 

  51. Etheridge SL, Roh ME, Cosgrove ME et al (2014) JAK2V617F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms. Proc Natl Acad Sci U S A 111:2295–2300

    Article  CAS  Google Scholar 

  52. Zhan H, Lin CHS, Segal Y, Kaushansky K (2018) The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia 32:462–469

    Article  CAS  Google Scholar 

  53. Lin CH, Kaushansky K, Zhan H (2016) JAK2V617F-mutant vascular niche contributes to JAK2V617F clonal expansion in myeloproliferative neoplasms. Blood Cells Mol Dis 62:42–48

    Article  CAS  Google Scholar 

  54. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274–4281

    Article  CAS  Google Scholar 

  55. Mullally A, Lane SW, Ball B et al (2010) Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 17:584–596

    Article  CAS  Google Scholar 

  56. Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG (2010) Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 115:3589–3597

    Article  CAS  Google Scholar 

  57. Li J, Spensberger D, Ahn JS et al (2010) JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 116:1528–1538

    Article  CAS  Google Scholar 

  58. Kent DG, Li J, Tanna H et al (2013) Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biol 11:e1001576

    Article  CAS  Google Scholar 

  59. Li J, Kent DG, Godfrey AL et al (2014) JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood 123:3139–3151

    Article  CAS  Google Scholar 

  60. Gale RE, Allen AJ, Nash MJ, Linch DC (2007) Long-term serial analysis of X-chromosome inactivation patterns and JAK2 V617F mutant levels in patients with essential thrombocythemia show that minor mutant-positive clones can remain stable for many years. Blood 109:1241–1243

    Article  CAS  Google Scholar 

  61. Lambert JR, Gale RE, Linch DC (2009) The production of JAK2 wild-type platelets is not downregulated in patients with JAK2 V617F mutant-positive essential thrombocythaemia. Br J Haematol 145:128–130

    Article  CAS  Google Scholar 

  62. Stein BL, Williams DM, Wang NY et al (2010) Sex differences in the JAK2 V617F allele burden in chronic myeloproliferative disorders. Haematologica 95:1090–1097

    Article  Google Scholar 

  63. Kroger N, Holler E, Kobbe G et al (2009) Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 114:5264–5270

    Article  CAS  Google Scholar 

  64. Patriarca F, Bacigalupo A, Sperotto A et al (2008) Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica 93:1514–1522

    Article  CAS  Google Scholar 

  65. Guardiola P, Anderson JE, Bandini G et al (1999) Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Societe Francaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood 93:2831–2838

    CAS  Google Scholar 

  66. Ballen KK, Shrestha S, Sobocinski KA et al (2010) Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 16:358–367

    Article  Google Scholar 

  67. Lin CHS, Zhang Y, Kaushansky K, Zhan H (2018) JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica 103:1160–1168

    Article  CAS  Google Scholar 

  68. Doan PL, Himburg HA, Helms K et al (2013) Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med 19:295–304

    Article  CAS  Google Scholar 

  69. Himburg HA, Muramoto GG, Daher P et al (2010) Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 16:475–482

    Article  CAS  Google Scholar 

  70. Junt T, Schulze H, Chen Z et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317:1767–1770

    Article  CAS  Google Scholar 

  71. Tiedt R, Schomber T, Hao-Shen H, Skoda RC (2007) Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 109:1503–1506

    Article  CAS  Google Scholar 

  72. Zhan H, Ma Y, Lin CH, Kaushansky K (2016) JAK2(V617F)-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia 30:2332–2341

    Article  CAS  Google Scholar 

  73. Zhang Y, Lin CHS, Kaushansky K, Zhan H (2018) JAK2V617F megakaryocytes promote hematopoietic stem/progenitor cell expansion in mice through thrombopoietin/MPL signaling. Stem Cells 36:1676–1684

    Article  CAS  Google Scholar 

  74. Kaushansky K, Lok S, Holly RD et al (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369:568–571

    Article  CAS  Google Scholar 

  75. Fox N, Priestley G, Papayannopoulou T, Kaushansky K (2002) Thrombopoietin expands hematopoietic stem cells after transplantation. J Clin Invest 110:389–394

    Article  CAS  Google Scholar 

  76. Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697

    Article  CAS  Google Scholar 

  77. Qian H, Buza-Vidas N, Hyland CD et al (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–684

    Article  CAS  Google Scholar 

  78. Sitnicka E, Lin N, Priestley GV et al (1996) The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87:4998–5005

    Article  CAS  Google Scholar 

  79. Kimura S, Roberts AW, Metcalf D, Alexander WS (1998) Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci U S A 95:1195–1200

    Article  CAS  Google Scholar 

  80. Solar GP, Kerr WG, Zeigler FC et al (1998) Role of c-mpl in early hematopoiesis. Blood 92:4–10

    Article  CAS  Google Scholar 

  81. Cardier JE, Dempsey J (1998) Thrombopoietin and its receptor, c-mpl, are constitutively expressed by mouse liver endothelial cells: evidence of thrombopoietin as a growth factor for liver endothelial cells. Blood 91:923–929

    Article  CAS  Google Scholar 

  82. Brizzi MF, Battaglia E, Montrucchio G et al (1999) Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism. Circ Res 84:785–796

    Article  CAS  Google Scholar 

  83. Eguchi M, Masuda H, Kwon S et al (2008) Lesion-targeted thrombopoietin potentiates vasculogenesis by enhancing motility and enlivenment of transplanted endothelial progenitor cells via activation of Akt/mTOR/p70S6kinase signaling pathway. J Mol Cell Cardiol 45:661–669

    Article  CAS  Google Scholar 

  84. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS (2014) The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood 124:3956–3963

    Article  CAS  Google Scholar 

  85. Araki M, Yang Y, Masubuchi N et al (2016) Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 127:1307–1316

    Article  CAS  Google Scholar 

  86. Chachoua I, Pecquet C, El-Khoury M et al (2016) Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 127:1325–1335

    Article  CAS  Google Scholar 

  87. Elf S, Abdelfattah NS, Chen E et al (2016) Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov 6:368–381

    Article  CAS  Google Scholar 

  88. Marty C, Pecquet C, Nivarthi H et al (2016) Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood 127:1317–1324

    Article  CAS  Google Scholar 

  89. Ng AP, Kauppi M, Metcalf D et al (2014) Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc Natl Acad Sci U S A 111:5884–5889

    Article  CAS  Google Scholar 

  90. Privratsky JR, Newman PJ (2014) PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355:607–619

    Article  CAS  Google Scholar 

  91. Itkin T, Gur-Cohen S, Spencer JA et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328

    Article  CAS  Google Scholar 

  92. Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J (2014) SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 124:277–286

    Article  CAS  Google Scholar 

  93. Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huichun Zhan or Kenneth Kaushansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhan, H., Kaushansky, K. (2020). The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_7

Download citation

Publish with us

Policies and ethics