Skip to main content

B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine?

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1273)

Abstract

We review state-of-the-art in translational and clinical studies focusing on the tumor microenvironment (TME) with a focus on tumor-infiltrating B cells (TIBs). The TME is a dynamic matrix of mutations, immune-regulatory networks, and distinct cell-to-cell interactions which collectively impact on disease progress. We discuss relevant findings concerning B cells in pancreatic cancer, the concepts of “bystander” B cells, the role of antigen-specific B cells contributing to augmenting anticancer-directed immune responses, the role of B cells as prognostic markers for response to checkpoint inhibitors (ICBs), and the potential use in adoptive cell tumor-infiltrating lymphocyte (TIL) products.

Keywords

  • Immunosuppression
  • Pancreatic cancer
  • Immune responses
  • Inflammation
  • Breg
  • TIL
  • B cells
  • Antibody
  • Complement
  • Immune checkpoint inhibition
  • ICB
  • Cytokines
  • Prognostic markers
  • TIB
  • RNA profiling
  • CDR3
  • Therapy
  • Adjuvant therapy
  • Chemotherapy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-49270-0_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-49270-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    CrossRef  Google Scholar 

  2. McGuigan A, Kelly P, Turkington R, Jones C, Coleman H, McCain S (2018) Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 24(43):16

    CrossRef  Google Scholar 

  3. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825

    CrossRef  CAS  Google Scholar 

  4. Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, Ychou M, Bouche O, Guimbaud R et al (2013) Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol 31(1):23–29

    CrossRef  CAS  Google Scholar 

  5. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29(34):4548–4554

    CrossRef  CAS  Google Scholar 

  6. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703

    CrossRef  CAS  Google Scholar 

  7. Zhang J, Wolfgang CL, Zheng L (2018) Precision immuno-oncology: prospects of individualized immunotherapy for pancreatic cancer. Cancers (Basel) 10(2):39

    CrossRef  CAS  Google Scholar 

  8. Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P (2018) Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154(4):820–838

    CrossRef  Google Scholar 

  9. Dougan SK (2017) The pancreatic cancer microenvironment. Cancer J 23(6):321–325

    CrossRef  Google Scholar 

  10. Chang AI, Schwertschkow AH, Nolta JA, Wu J (2015) Involvement of mesenchymal stem cells in cancer progression and metastases. Curr Cancer Drug Targets 15(2):88–98

    CrossRef  CAS  Google Scholar 

  11. Gururajan M, Josson S, Chung LWK (2015) Targeting the tumor-stromal-immune cell axis. Onco Targets Ther 2(9):743–744

    Google Scholar 

  12. Xie D, Xie K (2015) Pancreatic cancer stromal biology and therapy. Genes Dis 2(2):133–143

    CrossRef  CAS  Google Scholar 

  13. Mielgo A, Schmid MC (2013) Impact of tumour associated macrophages in pancreatic cancer. BMB Rep 46(3):131–138

    CrossRef  CAS  Google Scholar 

  14. Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F et al (2012) Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 119(24):5688–5696

    CrossRef  CAS  Google Scholar 

  15. Perdicchio M, Ilarregui JM, Verstege MI, Cornelissen LA, Schetters ST, Engels S et al (2016) Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci U S A 113(12):3329–3334

    CrossRef  CAS  Google Scholar 

  16. Bassagañas S, Carvalho S, Dias AM, Pérez-Garay M, Ortiz MR, Figueras J et al (2014) Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS One 9(5):e98595

    CrossRef  CAS  Google Scholar 

  17. Akasov R, Haq S, Haxho F, Samuel V, Burov SV, Markvicheva E et al (2016) Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget 7(40):66119–66134

    CrossRef  Google Scholar 

  18. Guo G, Marrero L, Rodriguez P, Del Valle L, Ochoa A, Cui Y (2013) Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network. Cancer Res 73(6):1668–1675

    CrossRef  CAS  Google Scholar 

  19. Lee J, Snyder ER, Liu Y, Gu X, Wang J, Flowers BM et al (2017) Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat Commun 8:14686

    CrossRef  Google Scholar 

  20. Qian ZR, Rubinson DA, Nowak JA, Morales-Oyarvide V, Dunne RF, Kozak MM et al (2017) Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol 4(3):e173420

    CrossRef  Google Scholar 

  21. Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H et al (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37(1):173–187

    CrossRef  CAS  Google Scholar 

  22. Cui Y, Guo G (2016) Immunomodulatory function of the tumor suppressor p53 in host immune response and the tumor microenvironment. Int J Mol Sci 17(11):1942

    CrossRef  CAS  Google Scholar 

  23. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR et al (2013) Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res 73(20):6359–6374

    CrossRef  CAS  Google Scholar 

  24. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB et al (2016) IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255

    CrossRef  CAS  Google Scholar 

  25. Fujisawa T, Joshi B, Nakajima A, Puri RK (2009) A novel role of interleukin-13 receptor alpha2 in pancreatic cancer invasion and metastasis. Cancer Res 69(22):8678–8685

    CrossRef  CAS  Google Scholar 

  26. Liou GY, Bastea L, Fleming A, Doppler H, Edenfield BH, Dawson DW et al (2017) The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep 19(7):1322–1333

    CrossRef  CAS  Google Scholar 

  27. Weissmueller S, Manchado E, Saborowski M, Morris JP, Wagenblast E, Davis CA et al (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 157(2):382–394

    CrossRef  CAS  Google Scholar 

  28. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22(8):851–860

    CrossRef  CAS  Google Scholar 

  29. Muzumdar MD, Dorans KJ, Chung KM, Robbins R, Tammela T, Gocheva V et al (2016) Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun 7:12685

    CrossRef  CAS  Google Scholar 

  30. Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122(2):639–653

    CrossRef  CAS  Google Scholar 

  31. Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W et al (2017) Oncogenic KRAS targets MUC16/CA125 in pancreatic ductal adenocarcinoma. Mol Cancer Res 15(2):201–212

    CrossRef  CAS  Google Scholar 

  32. Liou GY, Doppler H, Necela B, Edenfield B, Zhang L, Dawson DW et al (2015) Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov 5(1):52–63

    CrossRef  CAS  Google Scholar 

  33. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    CrossRef  CAS  Google Scholar 

  34. Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R et al (2017) Impaired HLA Class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7(12):1420–1435

    CrossRef  CAS  Google Scholar 

  35. Syn NL, Teng MWL, Mok TSK, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18(12):e731–ee41

    CrossRef  Google Scholar 

  36. Koopman LA, van Der Slik AR, Giphart MJ, Fleuren GJ (1999) Human leukocyte antigen class I gene mutations in cervical cancer. J Natl Cancer Inst 91(19):1669–1677

    CrossRef  CAS  Google Scholar 

  37. Atkins D, Breuckmann A, Schmahl GE, Binner P, Ferrone S, Krummenauer F et al (2004) MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer 109(2):265–273

    CrossRef  CAS  Google Scholar 

  38. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E et al (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124(5):2246–2259

    CrossRef  CAS  Google Scholar 

  39. Torres MJ, Ruiz-Cabello F, Skoudy A, Berrozpe G, Jimenez P, Serrano A et al (1996) Loss of an HLA haplotype in pancreas cancer tissue and its corresponding tumor derived cell line. Tissue Antigens 47(5):372–381

    CrossRef  CAS  Google Scholar 

  40. Pandha H, Rigg A, John J, Lemoine N (2007) Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines. Clin Exp Immunol 148(1):127–135

    CrossRef  CAS  Google Scholar 

  41. Fruci D, Giacomini P, Nicotra MR, Forloni M, Fraioli R, Saveanu L et al (2008) Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. J Cell Physiol 216(3):742–749

    CrossRef  CAS  Google Scholar 

  42. Meng Q, Liu Z, Rangelova E, Poiret T, Ambati A, Rane L et al (2016) Expansion of tumor-reactive T cells from patients with pancreatic cancer. J Immunother 39(2):81–89

    CrossRef  CAS  Google Scholar 

  43. Meng Q, Valentini D, Rao M, Maeurer M (2018) KRAS RENAISSANCE(S) in tumor infiltrating B cells in pancreatic cancer. Front Oncol 8:384

    CrossRef  Google Scholar 

  44. Meng Q, Valentini D, Rao M, Moro CF, Paraschoudi G, Jager E et al (2019) Neoepitope targets of tumour-infiltrating lymphocytes from patients with pancreatic cancer. Br J Cancer 120(1):97–108

    CrossRef  CAS  Google Scholar 

  45. Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB et al (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 4(7):e6412

    CrossRef  CAS  Google Scholar 

  46. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227

    CrossRef  CAS  Google Scholar 

  47. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417

    CrossRef  CAS  Google Scholar 

  48. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G (2009) Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9:292

    CrossRef  CAS  Google Scholar 

  49. Garg K, Maurer M, Griss J, Bruggen MC, Wolf IH, Wagner C et al (2016) Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum Pathol 54:157–164

    CrossRef  CAS  Google Scholar 

  50. Suzuki A, Masuda A, Nagata H, Kameoka S, Kikawada Y, Yamakawa M et al (2002) Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma. J Pathol 196(1):37–43

    CrossRef  Google Scholar 

  51. Jackson PA, Green MA, Marks CG, King RJ, Hubbard R, Cook MG (1996) Lymphocyte subset infiltration patterns and HLA antigen status in colorectal carcinomas and adenomas. Gut 38(1):85–89

    CrossRef  CAS  Google Scholar 

  52. Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R et al (2015) Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5(4):e1085147

    CrossRef  CAS  Google Scholar 

  53. Hennequin A, Derangere V, Boidot R, Apetoh L, Vincent J, Orry D et al (2016) Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. Onco Targets Ther 5(2):e1054598

    Google Scholar 

  54. Sakimura C, Tanaka H, Okuno T, Hiramatsu S, Muguruma K, Hirakawa K et al (2017) B cells in tertiary lymphoid structures are associated with favorable prognosis in gastric cancer. J Surg Res 215:74–82

    CrossRef  CAS  Google Scholar 

  55. Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB et al (2017) Antigen-presenting intratumoral B cells affect CD4(+) TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol Res 5(10):898–907

    CrossRef  CAS  Google Scholar 

  56. Chang JH, Jiang Y, Pillarisetty VG (2016) Role of immune cells in pancreatic cancer from bench to clinical application: an updated review. Medicine 95(49):e5541

    CrossRef  CAS  Google Scholar 

  57. Spear S, Candido JB, McDermott JR, Ghirelli C, Maniati E, Beers SA et al (2019) Discrepancies in the tumor microenvironment of spontaneous and orthotopic Murine models of pancreatic cancer uncover a new immunostimulatory phenotype for B cells. Front Immunol 10:542

    CrossRef  CAS  Google Scholar 

  58. Lund FE (2008) Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol 20(3):332–338

    CrossRef  CAS  Google Scholar 

  59. Schlegel PM, Steiert I, Kotter I, Muller CA (2013) B cells contribute to heterogeneity of IL-17 producing cells in rheumatoid arthritis and healthy controls. PLoS One 8(12):e82580

    CrossRef  CAS  Google Scholar 

  60. Wang K, Liu J, Li J (2018) IL-35-producing B cells in gastric cancer patients. Medicine (Baltimore) 97(19):e0710

    CrossRef  CAS  Google Scholar 

  61. Ettinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R et al (2005) IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 175(12):7867–7879

    CrossRef  CAS  Google Scholar 

  62. Diehl SA, Schmidlin H, Nagasawa M, Blom B, Spits H (2012) IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol Cell Biol 90(8):802–811

    CrossRef  CAS  Google Scholar 

  63. Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175(4):2261–2269

    CrossRef  CAS  Google Scholar 

  64. Liu S, Lizée G, Lou Y, Liu C, Overwijk WW, Wang G et al (2007) IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int Immunol 19(10):1213–1221

    CrossRef  CAS  Google Scholar 

  65. Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, Weber J et al (2009) IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324(5934):1576–1580

    CrossRef  CAS  Google Scholar 

  66. Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N et al (2014) T cell-intrinsic role of IL-6 signaling in primary and memory responses. eLife 3:e01949

    CrossRef  CAS  Google Scholar 

  67. Holmer R, Goumas FA, Waetzig GH, Rose-John S, Kalthoff H (2014) Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int 13(4):371–380

    CrossRef  CAS  Google Scholar 

  68. Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9(2):145–165

    CrossRef  CAS  Google Scholar 

  69. Mahamed DA, Toussaint LE, Bynoe MS (2015) CD73-generated adenosine is critical for immune regulation during Toxoplasma gondii infection. Infect Immun 83(2):721–729

    CrossRef  CAS  Google Scholar 

  70. Dong K, Gao Z-W, Zhang H-Z (2016) The role of adenosinergic pathway in human autoimmune diseases. Immunol Res 64(5):1133–1141

    CrossRef  CAS  Google Scholar 

  71. Andersson O, Adams Bruce A, Yoo D, Ellis Gregory C, Gut P, Anderson Ryan M et al (2012) Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 15(6):885–894

    CrossRef  CAS  Google Scholar 

  72. Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó B, Németh ZH et al (2017) A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J 31(11):4985–4997

    CrossRef  Google Scholar 

  73. Antonioli L, Hasko G, Fornai M, Colucci R, Blandizzi C (2014) Adenosine pathway and cancer: where do we go from here? Expert Opin Ther Targets 18(9):973–977

    CrossRef  CAS  Google Scholar 

  74. Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122(1):9–18

    CrossRef  CAS  Google Scholar 

  75. Ziebart A, Huber U, Jeske S, Laban S, Doescher J, Hoffmann TK et al (2017) The influence of chemotherapy on adenosine-producing B cells in patients with head and neck squamous cell carcinoma. Oncotarget 9(5):5834–5847

    CrossRef  Google Scholar 

  76. Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y et al (2017) Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 9(19):14803–14814

    CrossRef  Google Scholar 

  77. Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang FZ et al (2016) PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 6(5):546–559

    CrossRef  CAS  Google Scholar 

  78. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41(1):89–103

    CrossRef  CAS  Google Scholar 

  79. Jiang S, Yan W, Wang SE, Baltimore D (2018) Let-7 suppresses B cell activation through restricting the availability of necessary nutrients. Cell Metab 27(2):393–403.e4

    CrossRef  CAS  Google Scholar 

  80. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J et al (2013) Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer 133(1):98–107

    CrossRef  CAS  Google Scholar 

  81. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106(6):2018–2025

    CrossRef  CAS  Google Scholar 

  82. Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B (2010) Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 70(12):4850–4858

    CrossRef  CAS  Google Scholar 

  83. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261

    CrossRef  CAS  Google Scholar 

  84. Zhan T, Ambrosi G, Wandmacher AM, Rauscher B, Betge J, Rindtorff N et al (2019) MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun 10(1):2197

    CrossRef  CAS  Google Scholar 

  85. Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X et al (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8(1):607

    CrossRef  CAS  Google Scholar 

  86. Mutgan AC, Besikcioglu HE, Wang S, Friess H, Ceyhan GO, Demir IE (2018) Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol Cancer 17(1):66

    CrossRef  CAS  Google Scholar 

  87. Nelson BH (2010) CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982

    CrossRef  CAS  Google Scholar 

  88. Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD et al (1998) Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 76(5):652–658

    CrossRef  CAS  Google Scholar 

  89. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW et al (2018) Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557(7706):575–579

    CrossRef  CAS  Google Scholar 

  90. Whiteside SK, Snook JP, Williams MA, Weis JJ (2018) Bystander T cells: a balancing act of friends and foes. Trends Immunol 39(12):1021–1035

    CrossRef  CAS  Google Scholar 

  91. Seluk L, Taliansky A, Yonath H, Gilburd B, Amital H, Shoenfeld Y et al (2018) A large screen for paraneoplastic neurological autoantibodies; diagnosis and predictive values. Clin Immunol 199:29–36

    CrossRef  CAS  Google Scholar 

  92. Wennhold K, Thelen M, Schlosser HA, Haustein N, Reuter S, Garcia-Marquez M et al (2017) Using antigen-specific B cells to combine antibody and T cell-based cancer immunotherapy. Cancer Immunol Res 5(9):730–743

    CrossRef  CAS  Google Scholar 

  93. Meng Q, Valentini D, Rao M, Dodoo E, Maeurer M (2018) CMV and EBV targets recognized by tumor-infiltrating B lymphocytes in pancreatic cancer and brain tumors. Sci Rep 8(1):17079–17089

    CrossRef  CAS  Google Scholar 

  94. Erkes DA, Smith CJ, Wilski NA, Caldeira-Dantas S, Mohgbeli T, Snyder CM (2017) Virus-specific CD8+ T cells infiltrate melanoma lesions and retain function independently of PD-1 expression. J Immunol 198(7):2979–2988

    CrossRef  CAS  Google Scholar 

  95. Suyama T, Fukuda Y, Soda H, Ogawara D, Iwasaki K, Hara T et al (2018) Successful treatment with nivolumab for lung cancer with low expression of PD-L1 and prominent tumor-infiltrating B cells and immunoglobulin G. Thorac Cancer 9(6):750–753

    CrossRef  CAS  Google Scholar 

  96. Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanović S, Robbins PF et al (2019) Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol 4(31):eaao4310

    CrossRef  CAS  Google Scholar 

  97. Rao M, Zhenjiang L, Meng Q, Sinclair G, Dodoo E, Maeurer M (2018) Mutant epitopes in cancer. In: Zitvogel L, Kroemer G (eds) Oncoimmunology: a practical guide for cancer immunotherapy. Springer International Publishing, Cham, pp 41–67

    CrossRef  Google Scholar 

  98. Rao M, Valentini D, Dodoo E, Zumla A, Maeurer M (2017) Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm. Int J Infect Dis 56:221–228

    CrossRef  CAS  Google Scholar 

  99. Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y (2018) Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 11(1):8

    CrossRef  CAS  Google Scholar 

  100. Varn FS, Wang Y, Cheng C (2018) A B cell-derived gene expression signature associates with an immunologically active tumor microenvironment and response to immune checkpoint blockade therapy. Oncoimmunology 8(1):e1513440

    CrossRef  Google Scholar 

  101. Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK et al (2018) Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest 128(2):715–720

    CrossRef  Google Scholar 

  102. Griss J, Bauer W, Wagner C, Maurer-Granofszky M, Simon M, Chen M et al (2019) B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. bioRxiv 478735

    Google Scholar 

  103. Zhang Y, Gallastegui N, Rosenblatt JD (2015) Regulatory B cells in anti-tumor immunity. Int Immunol 27(10):521–530

    CrossRef  CAS  Google Scholar 

  104. Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun CM, Calderaro J et al (2020) B cells are associated with survival and immunotherapy response in sarcoma. Nature 577(7791):556–560

    CrossRef  CAS  Google Scholar 

  105. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122

    CrossRef  CAS  Google Scholar 

  106. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    CrossRef  CAS  Google Scholar 

  107. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM (2020) B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 20(5):294–307

    CrossRef  CAS  Google Scholar 

  108. Lu Y, Zhao Q, Liao JY, Song E, Xia Q, Pan J et al (2020) Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell 180(6):1081–97 e24

    CrossRef  CAS  Google Scholar 

  109. Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615

    CrossRef  CAS  Google Scholar 

  110. Hirt UA, Waizenegger IC, Schweifer N, Haslinger C, Gerlach D, Braunger J et al (2018) Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis 7(2):21

    CrossRef  CAS  Google Scholar 

  111. Kanteti R, Mirzapoiazova T, Riehm JJ, Dhanasingh I, Mambetsariev B, Wang J et al (2018) Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther 19(4):316–327

    CrossRef  CAS  Google Scholar 

  112. Medicine USNLo. Focal adhesion kinase: U.S. National Library of Medicine; 2018. Available from: https://clinicaltrials.gov/ct2/results?cond=focal+adhesion+kinase&term=&cntry=&state=&city=&dist=

  113. Park SY, Wolfram P, Canty K, Harley B, Nombela-Arrieta C, Pivarnik G et al (2013) Focal adhesion kinase regulates the localization and retention of pro-B cells in bone marrow microenvironments. J Immunol 190(3):1094–1102

    CrossRef  CAS  Google Scholar 

  114. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    CrossRef  CAS  Google Scholar 

  115. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108

    CrossRef  CAS  Google Scholar 

  116. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    CrossRef  CAS  Google Scholar 

  117. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8(4):403–416

    CrossRef  CAS  Google Scholar 

  118. Archibugi L, Signoretti M, Capurso G (2018) The microbiome and pancreatic cancer: an evidence-based association? J Clin Gastroenterol 52(Suppl 1)., Proceedings from the 9th probiotics, prebiotics and new foods, nutraceuticals and botanicals for nutrition & human and microbiota health meeting, held in Rome, Italy from September 10 to 12, 2017:S82–S85

    Google Scholar 

  119. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM et al (2018) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67(1):120–127

    CrossRef  CAS  Google Scholar 

  120. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI et al (2019) The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574(7777):264–267

    CrossRef  CAS  Google Scholar 

  121. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W et al (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178(4):795–806 e12

    CrossRef  CAS  Google Scholar 

  122. Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT et al (2019) Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host Microbe 26(1):100–113.e8

    CrossRef  CAS  Google Scholar 

  123. Jellusova J, Cato MH, Apgar JR, Ramezani-Rad P, Leung CR, Chen C et al (2017) Gsk3 is a metabolic checkpoint regulator in B cells. Nat Immunol 18(3):303–312

    CrossRef  CAS  Google Scholar 

  124. Chan LN, Chen Z, Braas D, Lee J-W, Xiao G, Geng H et al (2017) Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542:479

    CrossRef  CAS  Google Scholar 

  125. Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B et al (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159

    CrossRef  CAS  Google Scholar 

  126. Franchina DG, Grusdat M, Brenner D (2018) B-cell metabolic remodeling and cancer. Trends Cancer 4(2):138–150

    CrossRef  CAS  Google Scholar 

  127. Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA (2014) Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One 9(9):e106710

    CrossRef  CAS  Google Scholar 

  128. Smallwood HS, Duan S, Morfouace M, Rezinciuc S, Shulkin BL, Shelat A et al (2017) Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep 19(8):1640–1653

    CrossRef  CAS  Google Scholar 

  129. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD et al (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192(8):3626–3636

    CrossRef  CAS  Google Scholar 

  130. Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF et al (2006) Antigen receptor–mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107(11):4458–4465

    CrossRef  CAS  Google Scholar 

  131. Cho SH, Raybuck AL, Stengel K, Wei M, Beck TC, Volanakis E et al (2016) Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537:234

    CrossRef  CAS  Google Scholar 

  132. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56

    CrossRef  CAS  Google Scholar 

  133. Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E et al (2006) NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 95:1–30

    CrossRef  CAS  Google Scholar 

  134. Odunsi K, Qian F, Matsuzaki J, Mhawech-Fauceglia P, Andrews C, Hoffman EW et al (2007) Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci U S A 104(31):12837–12842

    CrossRef  CAS  Google Scholar 

  135. O’Hara M, Stashwick C, Haas AR, Tanyi JL (2016) Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy 8(4):449–460

    CrossRef  CAS  Google Scholar 

  136. Suh H, Pillai K, Morris DL (2017) Mucins in pancreatic cancer: biological role, implications in carcinogenesis and applications in diagnosis and therapy. Am J Cancer Res 7(6):1372–1383

    CAS  Google Scholar 

  137. Néron S, Roy A, Dumont N (2012) Large-scale in vitro expansion of polyclonal human switched-memory B lymphocytes. PLoS One 7(12):e51946

    CrossRef  CAS  Google Scholar 

  138. Nicodemus CF (2015) Antibody-based immunotherapy of solid cancers: progress and possibilities. Immunotherapy 7(8):923–939

    CrossRef  CAS  Google Scholar 

  139. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H et al (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169(4):1829–1836

    CrossRef  CAS  Google Scholar 

  140. Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y et al (2011) Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 17(15):4987–4995

    CrossRef  CAS  Google Scholar 

  141. Zhang J, Wang L (2019) The emerging world of TCR-T cell trials against cancer: a systematic review. Technology in Cancer Research & Treatment 18:1533033819831068

    CAS  Google Scholar 

  142. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365

    CrossRef  CAS  Google Scholar 

  143. Ichiki Y, Takenoyama M, Mizukami M, So T, Sugaya M, Yasuda M et al (2004) Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol 172(8):4844–4850

    CrossRef  CAS  Google Scholar 

  144. Liu Z, Poiret T, Meng Q, Rao M, von Landenberg A, Schoutrop E et al (2018) Epstein-Barr virus- and cytomegalovirus-specific immune response in patients with brain cancer. J Transl Med 16(1):182

    CrossRef  CAS  Google Scholar 

  145. Lasota J, Kowalik A, Felisiak-Golabek A, Inaguma S, Wang ZF, Pieciak L et al (2017) SP174, NRAS Q61R mutant-specific antibody, cross-reacts with KRAS Q61R mutant protein in colorectal carcinoma. Arch Pathol Lab Med 141(4):564–568

    CrossRef  CAS  Google Scholar 

  146. Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW et al (2017) Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun 8:15090

    CrossRef  Google Scholar 

  147. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B et al (2016) Bruton tyrosine kinase–dependent immune cell cross-talk drives pancreas cancer. Cancer Discov 6(3):270–285

    CrossRef  CAS  Google Scholar 

  148. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5):1182–1189

    CrossRef  CAS  Google Scholar 

  149. Song C, Bae Y, Jun J, Lee H, Kim ND, Lee KB et al (2017) Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. Biochim Biophys Acta 1861(4):947–957

    CrossRef  CAS  Google Scholar 

  150. Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D et al (2016) Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6(3):256–269

    CrossRef  CAS  Google Scholar 

  151. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 106(46):19256–19261

    CrossRef  CAS  Google Scholar 

  152. Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y et al (2012) The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336(6080):485–489

    CrossRef  CAS  Google Scholar 

  153. Petta I, Fraussen J, Somers V, Kleinewietfeld M (2018) Interrelation of diet, gut microbiome, and autoantibody production. Front Immunol 9:439

    CrossRef  CAS  Google Scholar 

  154. Pick R, He W, Chen C-S, Scheiermann C (2019) Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol 40(6):524–537

    CrossRef  CAS  Google Scholar 

  155. Reinshagen C, Bhere D, Choi SH, Hutten S, Nesterenko I, Wakimoto H et al (2018) CRISPR-enhanced engineering of therapy-sensitive cancer cells for self-targeting of primary and metastatic tumors. Sci Transl Med 10(449):eaao3240

    CrossRef  CAS  Google Scholar 

  156. Nagasawa T (2007) The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche. Adv Exp Med Biol 602:69–75

    CrossRef  Google Scholar 

  157. Porpaczy E, Tripolt S, Hoelbl-Kovacic A, Gisslinger B, Bago-Horvath Z, Casanova-Hevia E et al (2018) Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 132(7):694–706. https://doi.org/10.1182/blood-2017-10-810739

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Maeurer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ligeiro, D., Rao, M., Maia, A., Castillo, M., Beltran, A., Maeurer, M. (2020). B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine?. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_10

Download citation