Abstract
We review state-of-the-art in translational and clinical studies focusing on the tumor microenvironment (TME) with a focus on tumor-infiltrating B cells (TIBs). The TME is a dynamic matrix of mutations, immune-regulatory networks, and distinct cell-to-cell interactions which collectively impact on disease progress. We discuss relevant findings concerning B cells in pancreatic cancer, the concepts of “bystander” B cells, the role of antigen-specific B cells contributing to augmenting anticancer-directed immune responses, the role of B cells as prognostic markers for response to checkpoint inhibitors (ICBs), and the potential use in adoptive cell tumor-infiltrating lymphocyte (TIL) products.
Keywords
- Immunosuppression
- Pancreatic cancer
- Immune responses
- Inflammation
- Breg
- TIL
- B cells
- Antibody
- Complement
- Immune checkpoint inhibition
- ICB
- Cytokines
- Prognostic markers
- TIB
- RNA profiling
- CDR3
- Therapy
- Adjuvant therapy
- Chemotherapy
This is a preview of subscription content, access via your institution.
Buying options



References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424
McGuigan A, Kelly P, Turkington R, Jones C, Coleman H, McCain S (2018) Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 24(43):16
Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825
Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, Ychou M, Bouche O, Guimbaud R et al (2013) Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol 31(1):23–29
Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29(34):4548–4554
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703
Zhang J, Wolfgang CL, Zheng L (2018) Precision immuno-oncology: prospects of individualized immunotherapy for pancreatic cancer. Cancers (Basel) 10(2):39
Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P (2018) Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154(4):820–838
Dougan SK (2017) The pancreatic cancer microenvironment. Cancer J 23(6):321–325
Chang AI, Schwertschkow AH, Nolta JA, Wu J (2015) Involvement of mesenchymal stem cells in cancer progression and metastases. Curr Cancer Drug Targets 15(2):88–98
Gururajan M, Josson S, Chung LWK (2015) Targeting the tumor-stromal-immune cell axis. Onco Targets Ther 2(9):743–744
Xie D, Xie K (2015) Pancreatic cancer stromal biology and therapy. Genes Dis 2(2):133–143
Mielgo A, Schmid MC (2013) Impact of tumour associated macrophages in pancreatic cancer. BMB Rep 46(3):131–138
Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F et al (2012) Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 119(24):5688–5696
Perdicchio M, Ilarregui JM, Verstege MI, Cornelissen LA, Schetters ST, Engels S et al (2016) Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci U S A 113(12):3329–3334
Bassagañas S, Carvalho S, Dias AM, Pérez-Garay M, Ortiz MR, Figueras J et al (2014) Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS One 9(5):e98595
Akasov R, Haq S, Haxho F, Samuel V, Burov SV, Markvicheva E et al (2016) Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget 7(40):66119–66134
Guo G, Marrero L, Rodriguez P, Del Valle L, Ochoa A, Cui Y (2013) Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network. Cancer Res 73(6):1668–1675
Lee J, Snyder ER, Liu Y, Gu X, Wang J, Flowers BM et al (2017) Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat Commun 8:14686
Qian ZR, Rubinson DA, Nowak JA, Morales-Oyarvide V, Dunne RF, Kozak MM et al (2017) Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol 4(3):e173420
Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H et al (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37(1):173–187
Cui Y, Guo G (2016) Immunomodulatory function of the tumor suppressor p53 in host immune response and the tumor microenvironment. Int J Mol Sci 17(11):1942
Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR et al (2013) Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res 73(20):6359–6374
Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB et al (2016) IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255
Fujisawa T, Joshi B, Nakajima A, Puri RK (2009) A novel role of interleukin-13 receptor alpha2 in pancreatic cancer invasion and metastasis. Cancer Res 69(22):8678–8685
Liou GY, Bastea L, Fleming A, Doppler H, Edenfield BH, Dawson DW et al (2017) The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep 19(7):1322–1333
Weissmueller S, Manchado E, Saborowski M, Morris JP, Wagenblast E, Davis CA et al (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 157(2):382–394
Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22(8):851–860
Muzumdar MD, Dorans KJ, Chung KM, Robbins R, Tammela T, Gocheva V et al (2016) Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun 7:12685
Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122(2):639–653
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W et al (2017) Oncogenic KRAS targets MUC16/CA125 in pancreatic ductal adenocarcinoma. Mol Cancer Res 15(2):201–212
Liou GY, Doppler H, Necela B, Edenfield B, Zhang L, Dawson DW et al (2015) Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov 5(1):52–63
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R et al (2017) Impaired HLA Class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7(12):1420–1435
Syn NL, Teng MWL, Mok TSK, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18(12):e731–ee41
Koopman LA, van Der Slik AR, Giphart MJ, Fleuren GJ (1999) Human leukocyte antigen class I gene mutations in cervical cancer. J Natl Cancer Inst 91(19):1669–1677
Atkins D, Breuckmann A, Schmahl GE, Binner P, Ferrone S, Krummenauer F et al (2004) MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer 109(2):265–273
Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E et al (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124(5):2246–2259
Torres MJ, Ruiz-Cabello F, Skoudy A, Berrozpe G, Jimenez P, Serrano A et al (1996) Loss of an HLA haplotype in pancreas cancer tissue and its corresponding tumor derived cell line. Tissue Antigens 47(5):372–381
Pandha H, Rigg A, John J, Lemoine N (2007) Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines. Clin Exp Immunol 148(1):127–135
Fruci D, Giacomini P, Nicotra MR, Forloni M, Fraioli R, Saveanu L et al (2008) Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. J Cell Physiol 216(3):742–749
Meng Q, Liu Z, Rangelova E, Poiret T, Ambati A, Rane L et al (2016) Expansion of tumor-reactive T cells from patients with pancreatic cancer. J Immunother 39(2):81–89
Meng Q, Valentini D, Rao M, Maeurer M (2018) KRAS RENAISSANCE(S) in tumor infiltrating B cells in pancreatic cancer. Front Oncol 8:384
Meng Q, Valentini D, Rao M, Moro CF, Paraschoudi G, Jager E et al (2019) Neoepitope targets of tumour-infiltrating lymphocytes from patients with pancreatic cancer. Br J Cancer 120(1):97–108
Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB et al (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 4(7):e6412
Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227
Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417
Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G (2009) Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9:292
Garg K, Maurer M, Griss J, Bruggen MC, Wolf IH, Wagner C et al (2016) Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum Pathol 54:157–164
Suzuki A, Masuda A, Nagata H, Kameoka S, Kikawada Y, Yamakawa M et al (2002) Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma. J Pathol 196(1):37–43
Jackson PA, Green MA, Marks CG, King RJ, Hubbard R, Cook MG (1996) Lymphocyte subset infiltration patterns and HLA antigen status in colorectal carcinomas and adenomas. Gut 38(1):85–89
Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R et al (2015) Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5(4):e1085147
Hennequin A, Derangere V, Boidot R, Apetoh L, Vincent J, Orry D et al (2016) Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. Onco Targets Ther 5(2):e1054598
Sakimura C, Tanaka H, Okuno T, Hiramatsu S, Muguruma K, Hirakawa K et al (2017) B cells in tertiary lymphoid structures are associated with favorable prognosis in gastric cancer. J Surg Res 215:74–82
Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB et al (2017) Antigen-presenting intratumoral B cells affect CD4(+) TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol Res 5(10):898–907
Chang JH, Jiang Y, Pillarisetty VG (2016) Role of immune cells in pancreatic cancer from bench to clinical application: an updated review. Medicine 95(49):e5541
Spear S, Candido JB, McDermott JR, Ghirelli C, Maniati E, Beers SA et al (2019) Discrepancies in the tumor microenvironment of spontaneous and orthotopic Murine models of pancreatic cancer uncover a new immunostimulatory phenotype for B cells. Front Immunol 10:542
Lund FE (2008) Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol 20(3):332–338
Schlegel PM, Steiert I, Kotter I, Muller CA (2013) B cells contribute to heterogeneity of IL-17 producing cells in rheumatoid arthritis and healthy controls. PLoS One 8(12):e82580
Wang K, Liu J, Li J (2018) IL-35-producing B cells in gastric cancer patients. Medicine (Baltimore) 97(19):e0710
Ettinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R et al (2005) IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 175(12):7867–7879
Diehl SA, Schmidlin H, Nagasawa M, Blom B, Spits H (2012) IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol Cell Biol 90(8):802–811
Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175(4):2261–2269
Liu S, Lizée G, Lou Y, Liu C, Overwijk WW, Wang G et al (2007) IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int Immunol 19(10):1213–1221
Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, Weber J et al (2009) IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324(5934):1576–1580
Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N et al (2014) T cell-intrinsic role of IL-6 signaling in primary and memory responses. eLife 3:e01949
Holmer R, Goumas FA, Waetzig GH, Rose-John S, Kalthoff H (2014) Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int 13(4):371–380
Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9(2):145–165
Mahamed DA, Toussaint LE, Bynoe MS (2015) CD73-generated adenosine is critical for immune regulation during Toxoplasma gondii infection. Infect Immun 83(2):721–729
Dong K, Gao Z-W, Zhang H-Z (2016) The role of adenosinergic pathway in human autoimmune diseases. Immunol Res 64(5):1133–1141
Andersson O, Adams Bruce A, Yoo D, Ellis Gregory C, Gut P, Anderson Ryan M et al (2012) Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 15(6):885–894
Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó B, Németh ZH et al (2017) A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J 31(11):4985–4997
Antonioli L, Hasko G, Fornai M, Colucci R, Blandizzi C (2014) Adenosine pathway and cancer: where do we go from here? Expert Opin Ther Targets 18(9):973–977
Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122(1):9–18
Ziebart A, Huber U, Jeske S, Laban S, Doescher J, Hoffmann TK et al (2017) The influence of chemotherapy on adenosine-producing B cells in patients with head and neck squamous cell carcinoma. Oncotarget 9(5):5834–5847
Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y et al (2017) Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 9(19):14803–14814
Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang FZ et al (2016) PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 6(5):546–559
Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41(1):89–103
Jiang S, Yan W, Wang SE, Baltimore D (2018) Let-7 suppresses B cell activation through restricting the availability of necessary nutrients. Cell Metab 27(2):393–403.e4
Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J et al (2013) Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer 133(1):98–107
Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106(6):2018–2025
Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B (2010) Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 70(12):4850–4858
Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261
Zhan T, Ambrosi G, Wandmacher AM, Rauscher B, Betge J, Rindtorff N et al (2019) MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun 10(1):2197
Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X et al (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8(1):607
Mutgan AC, Besikcioglu HE, Wang S, Friess H, Ceyhan GO, Demir IE (2018) Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol Cancer 17(1):66
Nelson BH (2010) CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982
Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD et al (1998) Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 76(5):652–658
Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW et al (2018) Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557(7706):575–579
Whiteside SK, Snook JP, Williams MA, Weis JJ (2018) Bystander T cells: a balancing act of friends and foes. Trends Immunol 39(12):1021–1035
Seluk L, Taliansky A, Yonath H, Gilburd B, Amital H, Shoenfeld Y et al (2018) A large screen for paraneoplastic neurological autoantibodies; diagnosis and predictive values. Clin Immunol 199:29–36
Wennhold K, Thelen M, Schlosser HA, Haustein N, Reuter S, Garcia-Marquez M et al (2017) Using antigen-specific B cells to combine antibody and T cell-based cancer immunotherapy. Cancer Immunol Res 5(9):730–743
Meng Q, Valentini D, Rao M, Dodoo E, Maeurer M (2018) CMV and EBV targets recognized by tumor-infiltrating B lymphocytes in pancreatic cancer and brain tumors. Sci Rep 8(1):17079–17089
Erkes DA, Smith CJ, Wilski NA, Caldeira-Dantas S, Mohgbeli T, Snyder CM (2017) Virus-specific CD8+ T cells infiltrate melanoma lesions and retain function independently of PD-1 expression. J Immunol 198(7):2979–2988
Suyama T, Fukuda Y, Soda H, Ogawara D, Iwasaki K, Hara T et al (2018) Successful treatment with nivolumab for lung cancer with low expression of PD-L1 and prominent tumor-infiltrating B cells and immunoglobulin G. Thorac Cancer 9(6):750–753
Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanović S, Robbins PF et al (2019) Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol 4(31):eaao4310
Rao M, Zhenjiang L, Meng Q, Sinclair G, Dodoo E, Maeurer M (2018) Mutant epitopes in cancer. In: Zitvogel L, Kroemer G (eds) Oncoimmunology: a practical guide for cancer immunotherapy. Springer International Publishing, Cham, pp 41–67
Rao M, Valentini D, Dodoo E, Zumla A, Maeurer M (2017) Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm. Int J Infect Dis 56:221–228
Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y (2018) Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 11(1):8
Varn FS, Wang Y, Cheng C (2018) A B cell-derived gene expression signature associates with an immunologically active tumor microenvironment and response to immune checkpoint blockade therapy. Oncoimmunology 8(1):e1513440
Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK et al (2018) Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest 128(2):715–720
Griss J, Bauer W, Wagner C, Maurer-Granofszky M, Simon M, Chen M et al (2019) B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. bioRxiv 478735
Zhang Y, Gallastegui N, Rosenblatt JD (2015) Regulatory B cells in anti-tumor immunity. Int Immunol 27(10):521–530
Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun CM, Calderaro J et al (2020) B cells are associated with survival and immunotherapy response in sarcoma. Nature 577(7791):556–560
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122
Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38
Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM (2020) B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 20(5):294–307
Lu Y, Zhao Q, Liao JY, Song E, Xia Q, Pan J et al (2020) Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell 180(6):1081–97 e24
Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615
Hirt UA, Waizenegger IC, Schweifer N, Haslinger C, Gerlach D, Braunger J et al (2018) Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis 7(2):21
Kanteti R, Mirzapoiazova T, Riehm JJ, Dhanasingh I, Mambetsariev B, Wang J et al (2018) Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther 19(4):316–327
Medicine USNLo. Focal adhesion kinase: U.S. National Library of Medicine; 2018. Available from: https://clinicaltrials.gov/ct2/results?cond=focal+adhesion+kinase&term=&cntry=&state=&city=&dist=
Park SY, Wolfram P, Canty K, Harley B, Nombela-Arrieta C, Pivarnik G et al (2013) Focal adhesion kinase regulates the localization and retention of pro-B cells in bone marrow microenvironments. J Immunol 190(3):1094–1102
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8(4):403–416
Archibugi L, Signoretti M, Capurso G (2018) The microbiome and pancreatic cancer: an evidence-based association? J Clin Gastroenterol 52(Suppl 1)., Proceedings from the 9th probiotics, prebiotics and new foods, nutraceuticals and botanicals for nutrition & human and microbiota health meeting, held in Rome, Italy from September 10 to 12, 2017:S82–S85
Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM et al (2018) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67(1):120–127
Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI et al (2019) The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574(7777):264–267
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W et al (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178(4):795–806 e12
Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT et al (2019) Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host Microbe 26(1):100–113.e8
Jellusova J, Cato MH, Apgar JR, Ramezani-Rad P, Leung CR, Chen C et al (2017) Gsk3 is a metabolic checkpoint regulator in B cells. Nat Immunol 18(3):303–312
Chan LN, Chen Z, Braas D, Lee J-W, Xiao G, Geng H et al (2017) Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542:479
Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B et al (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159
Franchina DG, Grusdat M, Brenner D (2018) B-cell metabolic remodeling and cancer. Trends Cancer 4(2):138–150
Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA (2014) Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One 9(9):e106710
Smallwood HS, Duan S, Morfouace M, Rezinciuc S, Shulkin BL, Shelat A et al (2017) Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep 19(8):1640–1653
Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD et al (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192(8):3626–3636
Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF et al (2006) Antigen receptor–mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107(11):4458–4465
Cho SH, Raybuck AL, Stengel K, Wei M, Beck TC, Volanakis E et al (2016) Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537:234
Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56
Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E et al (2006) NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 95:1–30
Odunsi K, Qian F, Matsuzaki J, Mhawech-Fauceglia P, Andrews C, Hoffman EW et al (2007) Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci U S A 104(31):12837–12842
O’Hara M, Stashwick C, Haas AR, Tanyi JL (2016) Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy 8(4):449–460
Suh H, Pillai K, Morris DL (2017) Mucins in pancreatic cancer: biological role, implications in carcinogenesis and applications in diagnosis and therapy. Am J Cancer Res 7(6):1372–1383
Néron S, Roy A, Dumont N (2012) Large-scale in vitro expansion of polyclonal human switched-memory B lymphocytes. PLoS One 7(12):e51946
Nicodemus CF (2015) Antibody-based immunotherapy of solid cancers: progress and possibilities. Immunotherapy 7(8):923–939
Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H et al (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169(4):1829–1836
Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y et al (2011) Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 17(15):4987–4995
Zhang J, Wang L (2019) The emerging world of TCR-T cell trials against cancer: a systematic review. Technology in Cancer Research & Treatment 18:1533033819831068
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365
Ichiki Y, Takenoyama M, Mizukami M, So T, Sugaya M, Yasuda M et al (2004) Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol 172(8):4844–4850
Liu Z, Poiret T, Meng Q, Rao M, von Landenberg A, Schoutrop E et al (2018) Epstein-Barr virus- and cytomegalovirus-specific immune response in patients with brain cancer. J Transl Med 16(1):182
Lasota J, Kowalik A, Felisiak-Golabek A, Inaguma S, Wang ZF, Pieciak L et al (2017) SP174, NRAS Q61R mutant-specific antibody, cross-reacts with KRAS Q61R mutant protein in colorectal carcinoma. Arch Pathol Lab Med 141(4):564–568
Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW et al (2017) Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun 8:15090
Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B et al (2016) Bruton tyrosine kinase–dependent immune cell cross-talk drives pancreas cancer. Cancer Discov 6(3):270–285
Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5):1182–1189
Song C, Bae Y, Jun J, Lee H, Kim ND, Lee KB et al (2017) Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. Biochim Biophys Acta 1861(4):947–957
Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D et al (2016) Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6(3):256–269
Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 106(46):19256–19261
Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y et al (2012) The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336(6080):485–489
Petta I, Fraussen J, Somers V, Kleinewietfeld M (2018) Interrelation of diet, gut microbiome, and autoantibody production. Front Immunol 9:439
Pick R, He W, Chen C-S, Scheiermann C (2019) Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol 40(6):524–537
Reinshagen C, Bhere D, Choi SH, Hutten S, Nesterenko I, Wakimoto H et al (2018) CRISPR-enhanced engineering of therapy-sensitive cancer cells for self-targeting of primary and metastatic tumors. Sci Transl Med 10(449):eaao3240
Nagasawa T (2007) The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche. Adv Exp Med Biol 602:69–75
Porpaczy E, Tripolt S, Hoelbl-Kovacic A, Gisslinger B, Bago-Horvath Z, Casanova-Hevia E et al (2018) Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 132(7):694–706. https://doi.org/10.1182/blood-2017-10-810739
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ligeiro, D., Rao, M., Maia, A., Castillo, M., Beltran, A., Maeurer, M. (2020). B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine?. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-49270-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49269-4
Online ISBN: 978-3-030-49270-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)