Skip to main content

Multiscale Phenomena in Continuum Mechanics: Mesoscopic Justification of Rational Extended Thermodynamics of Gases with Internal Structure

  • Chapter
  • First Online:
Views on Microstructures in Granular Materials

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 44))

  • 433 Accesses

Abstract

In many physical systems one encounters situations where phenomena occur at different scales. An example is the modeling of a rarefied gas at varying Knudsen number (Kn). Large Kn corresponds to a case where the Boltzmann equation is the most appropriate model while, for small Kn, one can obtain the Euler or Navier–Stokes–Fourier system. At intermediate regime, using the mathematical methods of Rational Extended Thermodynamics (RET), one can obtain the closure of hyperbolic moment system associated with the Boltzmann equation for monatomic gas. This methodology can be extended to polyatomic gas by considering a distribution function depending on an extra variable that takes into account the internal motion of polyatomic molecule (rotation and vibration). In this survey paper we consider first the state-of-the-art of RET and at the end we give a summary on the recent results about more refined version of RET of polyatomic gas in which molecular rotational and vibrational relaxation processes are treated individually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper there are some misprints and therefore interested reader can check also Chapter 6 of the book [8].

References

  1. Charathédory, C.: Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann. 67 355–386 (1909).

    Article  MathSciNet  Google Scholar 

  2. Pogliani, L., Berberan-Santos M.N.: Constantin Carathéodory and the axiomatic thermodynamics. Journal of Mathematical Chemistry Vol. 28, N. 1–3, (2000).

    Google Scholar 

  3. Boyling, J.B.: Carathéodory’s Principle and the Existence of Global Integrating Factors, Commun. math. Phys. 10, , 52–68, (1968).

    Article  MathSciNet  MATH  Google Scholar 

  4. de Groot, S. R., Mazur, P.: Non-Equilibrium Thermodynamics; Dover: New York, (1984).

    MATH  Google Scholar 

  5. Cattaneo C.: Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948).

    MathSciNet  MATH  Google Scholar 

  6. Landau, L.: Theory of the Superfluidity of Helium II, J. Physique U.S.S.R. 5, 71–90 (1941).

    Google Scholar 

  7. Peshkov, V.: Second Sound in Helium II, J. Physique U.S.S.R. 8, 381–383 (1944).

    Google Scholar 

  8. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas, Springer, Cham Heidelberg New York Dordrecht London (2015).

    Book  MATH  Google Scholar 

  9. Grad, H.: On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 331–407 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  10. Müller, I.: On the frame dependence of stress and heat flux, Arch. Rat. Mech. Anal. 45, 241–250 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  11. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. 4th edn., Springer: Berlin, (2010).

    Book  MATH  Google Scholar 

  12. Ruggeri, T.: Struttura dei sistemi alle derivate parziali compatibili con un principio di entropia e termodinamica estesa, Supplemento Boll. UMI. del GNFM Fisica - Matematica (Volume dedicato al Prof. L. Caprioli nel suo 70 compleanno) 4, 261–279 (1985).

    Google Scholar 

  13. Liu, I-S., Müller, I.: Extended thermodynamics of classical and degenerate ideal gases, Arch. Rat. Mech. Anal. 83, 285-332 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, I-S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of Gases, Annals of Physics, 169, 191–219 (1986).

    Article  MathSciNet  Google Scholar 

  15. Müller, I., Ruggeri, T.: Extended Thermodynamics, Springer Tracts in Natural Philosophy 37 (I edition), Springer-Verlag, New York (1993).

    Google Scholar 

  16. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy 37 (II edition), Springer-Verlag, New York (1998).

    Google Scholar 

  17. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases, Cont. Mech. Thermodyn. 24, 271–292 (2012).

    Article  MATH  Google Scholar 

  18. Cimmelli, V. A., Jou, D., Ruggeri, T., Vàn, P.: Entropy principle and recent results in non-equilibrium theories. Entropy, 16, 1756–1807 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaynes, E. T.: Information Theory and Statistical Mechanics, Phys. Rev., 106, 620-630 (1957). Jaynes, E. T.: Information Theory and Statistical Mechanics II, Phys. Rev., 108, 171- 190 (1957).

    Google Scholar 

  20. Kogan M.N.: Rarefied Gas Dynamics, Plenum Press, New York (1969).

    Book  Google Scholar 

  21. Dreyer, W.: Maximization of the entropy in non-equilibrium, J. Phys. A: Math. Gen. 20, 6505-6517 (1987).

    Article  MATH  Google Scholar 

  22. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities, Continuum Mech. Thermodyn. 9, 205-212 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques, C. R. Acad. Sci. Paris A, 278, 909-912 (1974).

    MathSciNet  MATH  Google Scholar 

  24. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. H. Poincaré, Section A, 34, 65-84 (1981).

    MATH  Google Scholar 

  25. Borgnakke, C., Larsen, P. S.: Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture, J. Comput. Phys. 18, 405-420 (1975).

    Article  Google Scholar 

  26. Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases, Eur. J. Mech. B/Fluids, 13, 237-254( 1994).

    MathSciNet  MATH  Google Scholar 

  27. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases, Physica A, 392, 1302- 1317 (2013).

    Article  MathSciNet  Google Scholar 

  28. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Recent results on nonlinear extended thermodynamics of real gases with six fields Part I: general theory, Ric. Mat., 65, 263–277 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  29. Bisi, M., Ruggeri,T., Spiga, G.: Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamic, Kinetic and Related Models, 11 (1), 71–95, (2018).

    Article  MathSciNet  MATH  Google Scholar 

  30. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic Rarefied Gas as a Singular Limit of Polyatomic Gas in Extended Thermodynamics, Phys. Lett. A, 377, 2136–2140 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  31. Ikenberry, E.; Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Rational Mech. Anal. 5, 1–54 (1956).

    MathSciNet  MATH  Google Scholar 

  32. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics, Phys. Lett. A 377, 2136 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  33. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular Extended Thermodynamics of Rarefied Polyatomic Gases and Wave Velocities for Increasing Number of Moments, Annals of Physics 345, 111–140 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments, Annals of Physics 372, 83-109 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  35. Arima, T.; Ruggeri, T.; Sugiyama, M.: Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys. Rev. E, 96, 042143 (2017).

    Article  Google Scholar 

  36. Arima, T.; Ruggeri, T.; Sugiyama, M.: Extended Thermodynamics of Rarefied Polyatomic Gases: 15-Field Theory Incorporating Relaxation Processes of Molecular Rotation and Vibration. Entropy, 20, 301 (2018).

    Article  Google Scholar 

  37. Ruggeri, T.: Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad. Sin., 11, 1–22 (2016).

    MathSciNet  MATH  Google Scholar 

  38. Arima, T.; Ruggeri, T.; Sugiyama, M.: Duality principle from rarefied to dense gas and extended thermodynamics with six fields. Phys. Rev. Fluids, 2, 013401 (2017).

    Article  Google Scholar 

  39. Arima, T.; Sugiyama, M.: Extended thermodynamics of dense polyatomic gases: modeling of molecular energy exchange. Ricerche mat. 68, 91–101 (2019). https://doi.org/10.1007/s11587-018-0386-8.

    Article  MathSciNet  MATH  Google Scholar 

  40. Arima, T. Six-field extended thermodynamics models representing molecular energy exchange in a dense polyatomic gas. J. Phys.: Conf. Ser. 1035, 012002 (2018).

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Group of Mathematical Physics GNFM-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ruggeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruggeri, T. (2020). Multiscale Phenomena in Continuum Mechanics: Mesoscopic Justification of Rational Extended Thermodynamics of Gases with Internal Structure. In: Giovine, P., Mariano, P.M., Mortara, G. (eds) Views on Microstructures in Granular Materials. Advances in Mechanics and Mathematics(), vol 44. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-49267-0_10

Download citation

Publish with us

Policies and ethics