Skip to main content

Pathway to a Human-Values Based Approach to Tackle Misinformation Online

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12183)


Echoing what matters to us, our values pervade the criteria we apply in the judgment of the information we receive on social media when assigning to it a degree of relevance. In this era of “fake-news”, understanding how the values of a social group influence perception and intentions for sharing pieces of (mis)information can reveal critical aspects for socio-technical solutions to mitigate misinformation spreading. This particular study contrasts the reasoning of a group in the United Kingdom and another in Brazil when judging and valuating the same set of headlines. The results confirm the influence of dominant values in the group in the interpretation of the headlines and potential motivations for sharing them, pointing out directions to advance with the human values-based approach to fight misinformation.


  • Human values
  • Misinformation
  • Disinformation
  • Fake news

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

  2. 2.

    Fake News Card Game by The Takeover Game.

  3. 3.

    European Social Survey Round 9 Data (2018). Data file edition 1.2. NSD - Norwegian Centre for Research Data, Norway - Data Archive and distributor of ESS data for ESS ERIC.

  4. 4.

    Credibility Signals: a live document by the W3C Credible Web Community.


  1. Bazan, S.: A new way to win the war. IEEE Internet Comput. 21(4), 92–97 (2017).

    CrossRef  MathSciNet  Google Scholar 

  2. Bedard, M., Schoenthaler, C.: Satire or fake news: social media consumers’ socio-demographics decide. In: Companion Proceedings of the The Web Conference 2018, pp. 613–619 (2018)

    Google Scholar 

  3. Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298 (2012)

    CrossRef  Google Scholar 

  4. Caputo, D.D., Pfleeger, S., Freeman, J.D., Johnson, M.: Going spear phishing: exploring embedded training and awareness. IEEE Secur. Priv. 12(01), 28–38 (2014).

    CrossRef  Google Scholar 

  5. Chen, J., Hsieh, G., Mahmud, J.U., Nichols, J.: Understanding individuals’ personal values from social media word use. In: Proceedings of the 17th ACM CSCW & Social Computing, pp. 405–414 (2014)

    Google Scholar 

  6. Cybenko, G., Giani, A., Thompson, P.: Cognitive hacking: a battle for the mind. Computer 35(8), 50–56 (2002).

    CrossRef  Google Scholar 

  7. DiFranzo, D., Gloria-Garcia, K.: Filter bubbles and fake news. XRDS 23(3), 32–35 (2017).

    CrossRef  Google Scholar 

  8. ESS Round 9: European Social Survey Round 9 Data. Data file edition 1.2. NSD - Norwegian Centre for Research Data, Norway – Data Archive and distributor of ESS data for ESS ERIC (2018).

  9. Farrell, T., Piccolo, L., Perfumi, S.C., Alani, H.: Understanding the role of human values in the spread of misinformation. In: Proceedings of Truth and Trust Online (2019)

    Google Scholar 

  10. Garrett, R.K., Weeks, B.E.: The promise and peril of real-time corrections to political misperceptions. In: Proceedings of CSCW 2013, pp. 1047–1058. ACM (2013)

    Google Scholar 

  11. Ghenai, A., Mejova, Y.: Fake cures: user-centric modeling of health misinformation in social media. Proc. ACM Hum.-Comput. Interact. 2(CSCW), 1–20 (2018)

    CrossRef  Google Scholar 

  12. Goyanes, M.: The sociology of fake news: factors affecting the probability of sharing political fake news online. LSE Working Paper Series, June 2018

    Google Scholar 

  13. Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: real-time credibility assessment of content on Twitter. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 228–243. Springer, Cham (2014).

    CrossRef  Google Scholar 

  14. Hall, E.T.: The Silent Language, vol. 1, p. 959. Fawcett Publications. Inc., Greenwich (1959)

    Google Scholar 

  15. Han, O., Baris, I., de Nigris, S., Staab, S.: Democratic policy-making for misinformation detection platforms by git-based principles. In: Workshop Exploring the Limits of Misinformation at INTERACT 2019, Paphos.

  16. Hosseini, A.: Content Management Policies for Combating Misinformation (2020).

  17. Ireton, E.C., Posetti, J.: Journalism, ‘Fake News’ & Disinformation Handbook for Journalism Education and Training. United Nations Educational, Scientific and Cultural Organization - UNESCO (2018)

    Google Scholar 

  18. Karadzhov, G., Gencheva, P., Nakov, P., Koychev, I.: We built a fake news & click-bait filter: what happened next will blow your mind! arXiv preprint arXiv:1803.03786 (2018)

  19. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467, 312–322 (2018)

    CrossRef  Google Scholar 

  20. Nguyen-Vu, L., Park, J., Chau, N.T., Jung, S.: Signing key leak detection in Google Play Store. In: Proceedings of the 2016 International Conference on Information Networking (ICOIN), pp. 13–16. IEEE Computer Society, USA (2016)

    Google Scholar 

  21. Pereira, R., Baranauskas, M.C.C.: A value-oriented and culturally informed approach to the design of interactive systems. Int. J. Hum Comput Stud. 80, 66–82 (2015)

    CrossRef  Google Scholar 

  22. Piccolo, L.S.G., Joshi, S., Karapanos, E., Farrell, T.: Challenging misinformation: exploring limits and approaches. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019. LNCS, vol. 11749, pp. 713–718. Springer, Cham (2019).

    CrossRef  Google Scholar 

  23. Richerson, P.J., Boyd, R.: Not by Genes Alone: How Culture Transformed Human Evolution. University of Chicago press, Wiley (2008)

    Google Scholar 

  24. Rokeach, M.: The Nature of Human Values. Free Press, New York (1973)

    Google Scholar 

  25. Schwartz, M.: Guidelines for Bias-Free Writing. ERIC, Bloomington (1995)

    Google Scholar 

  26. Schwartz, S.H.: Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries. Adv. Exp. Soc. Psychol. 25, 1–65 (1992). Academic Press

    Google Scholar 

  27. Schwartz, S.H.: A proposal for measuring value orientations across nations. Quest. Packag. Eur. Soc. Surv. 259(290), 261 (2003)

    Google Scholar 

  28. Schwartz, S.H.: Les valeurs de base de la personne: théorie, mesures et applications. Revue française de sociologie 47(4), 929–968 (2006)

    Google Scholar 

  29. Schwartz, S.H.: An overview of the schwartz theory of basic values. Online Read. Psychol. Cult. 2(1), 0919–2307 (2012)

    Google Scholar 

  30. Stamper, R., Liu, K., Hafkamp, M., Ades, Y.: Understanding the roles of signs and norms in organizations-a semiotic approach to information systems design. Behav. Inf. Technol. 19(1), 15–27 (2000)

    CrossRef  Google Scholar 

  31. Theng, Y.L., Goh, L.Y.Q., Lwin, M.O., Shou-Boon, S.F.: Dispelling myths and misinformation using social media: a three-countries comparison using the case of tuberculosis. In: 2013 IEEE International Conference on Healthcare Informatics, pp. 147–152. IEEE (2013)

    Google Scholar 

  32. Thorson, E.: Belief echoes: the persistent effects of corrected misinformation. Polit. Commun. 33(3), 460–480 (2016)

    CrossRef  Google Scholar 

  33. Trilling, D., Tolochko, P., Burscher, B.: From newsworthiness to shareworthiness: how to predict news sharing based on article characteristics. J. Mass Commun. Q. 94(1), 38–60 (2017)

    Google Scholar 

  34. Tudjman, M., Mikelic, N.: Information science: science about information, misinformation and disinformation. Proc. Inform. Sci.+ Inf. Technol. Educ. 3, 1513–1527 (2003)

    Google Scholar 

  35. Verma, N., Fleischmann, K.R., Koltai, K.S.: Understanding online trust and information behavior using demographics and human values. In: Taylor, N.G., Christian-Lamb, C., Martin, M.H., Nardi, B. (eds.) iConference 2019. LNCS, vol. 11420, pp. 654–665. Springer, Cham (2019).

    CrossRef  Google Scholar 

  36. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018).

    CrossRef  Google Scholar 

Download references


This paper has been supported by the EC within the Horizon 2020 programme under grant agreement 770302 - Co-Inform.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lara S. G. Piccolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piccolo, L.S.G., Puska, A., Pereira, R., Farrell, T. (2020). Pathway to a Human-Values Based Approach to Tackle Misinformation Online. In: Kurosu, M. (eds) Human-Computer Interaction. Human Values and Quality of Life. HCII 2020. Lecture Notes in Computer Science(), vol 12183. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49064-5

  • Online ISBN: 978-3-030-49065-2

  • eBook Packages: Computer ScienceComputer Science (R0)