Skip to main content

The Impact of Increasing and Decreasing the Professionalism of News Webpage Aesthetics on the Perception of Bias in News Articles

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12181)

Abstract

This paper reports further results from a large study examining the impact of the visual aesthetics of news websites on the perception of bias in news articles. It focuses on the characteristic of professionalism, which is of particular importance to mainstream news websites. Nine news articles were amended to create a range of biased content. They were then paired with webpages from nine popular news websites which underwent common cumulative distortions to degrade the professionalism of their aesthetics. Pre-tests confirmed the effectiveness of these processes. A crowdsourced experiment and ANOVA analysis (N = 405, \(\alpha \) = 0.05, ES = 0.24) demonstrated a negative correlation between the professionalism of the aesthetics and perceptions of bias. These effects were common across all nine news websites and news articles with different levels of bias.

Keywords

  • Bias
  • News webpage aesthetics
  • News website design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-49059-1_50
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-49059-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    theguardian.com, telegraph.co.uk, independent.co.uk, economist.com, spectator.co.uk, newstatesman.com, aljazeera.com, bbc.com, and reuters.com.

  2. 2.

    www.prolific.co.

References

  1. Abdulla, R.A., Garrison, B., Salwen, M., Driscoll, P., Casey, D.: The credibility of newspapers, television news, and online news. Artículo presentado en la Association for Education in Journalism and Mass Communication (2002). http://www.com.miami.edu/car/miamibeach1.pdf

  2. An, S., Bergen, L.: Advertiser pressure on daily newspapers: a survey of advertising sales executives. J. Advert. 36(2), 111–121 (2007). https://doi.org/10.2753/JOA0091-3367360208. Accessed 17 Mar 2018

    CrossRef  Google Scholar 

  3. Babad, E.: Preferential treatment in television interviewing: evidence from nonverbal behavior. Polit. Commun. 16(3), 337–358 (1999). https://doi.org/10.1080/105846099198668. Accessed 22 May 2018

    CrossRef  Google Scholar 

  4. Bacher, J., Wenzig, K., Vogler, M.: SPSS two step cluster - a first evaluation 2004–2 (2004)

    Google Scholar 

  5. Barrett, A.W., Barrington, L.W.: Bias in newspaper photograph selection. Polit. Res. Q. 58(4), 609–618 (2005). 00038. http://prq.sagepub.com/content/58/4/609.short

    CrossRef  Google Scholar 

  6. Beam, R.A.: Journalism professionalism as an organizational-level concept. Assoc. Educ. J. Mass Commun. 121, 43 (1990)

    Google Scholar 

  7. Bernays, E.L.: Propaganda. Ig Publishing, New York (1928)

    Google Scholar 

  8. Bernstein, D.: Israel in the media: a guide to producing effective media critiques. The American Jewish Committie, June 2004. http://www.kintera.org/atf/cf/%7B42D75369-D582-4380-8395-D25925B85EAF%7D/Israel%20in%20the%20Media.pdf. Accessed 17 Mar 2018

  9. Brandenburg, H.: Political bias in the Irish media: a quantitative study of campaign coverage during the 2002 general election. Irish Polit. Stud. 20(3), 297–322 (2005). https://doi.org/10.1080/07907180500359350. Accessed 16 Feb 2018

    CrossRef  Google Scholar 

  10. Brandenburg, H.: Party strategy and media bias: a quantitative analysis of the 2005 UK election campaign. J. Election. Public Opin. Part. 16(2), 157–178 (2006). https://doi.org/10.1080/13689880600716027. Accessed 15 Feb 2018

    CrossRef  Google Scholar 

  11. Cassidy, W.P.: Online news credibility: an examination of the perceptions of newspaper journalists. J. Comput.-Mediat. Commun. 12(2), 478–498 (2007). https://doi.org/10.1111/j.1083-6101.2007.00334.x. https://academic.oup.com/jcmc/article/12/2/478/4583013

    CrossRef  Google Scholar 

  12. Chaiken, S.: Heuristic versus systematic information processing and the use of source versus message cues in persuasion. J. Pers. Soc. Psychol. 39(5), 752–766 (1980). 03839. https://www.unc.edu/~fbaum/teaching/articles/jpsp-1980-Chaiken.pdf

    CrossRef  Google Scholar 

  13. Chiagouris, L., Long, M.M., Plank, R.E.: The consumption of online news: the relationship of attitudes toward the site and credibility. J. Internet Commer. 7(4), 528–549 (2008)

    CrossRef  Google Scholar 

  14. Chomsky, N.: Media Control: The Spectacular Achievements of Propaganda. Open Media Series. Seven Stories Press, New York (2002)

    Google Scholar 

  15. Chung, C.J., Nam, Y., Stefanone, M.A.: Exploring online news credibility: the relative influence of traditional and technological factors. J. Comput.-Mediat. Commun. 17(2), 171–186 (2012). https://doi.org/10.1111/j.1083-6101.2011.01565.x. Accessed 18 Aug 2012

    CrossRef  Google Scholar 

  16. Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3), 297–334 (1951). https://doi.org/10.1007/BF02310555

    CrossRef  MATH  Google Scholar 

  17. D’Alessio, D., Allen, M.: Media bias in presidential elections: a meta-analysis. J. Commun. 50(4), 133–156 (2000). https://doi.org/10.1111/j.1460-2466.2000.tb02866.x. Accessed 10 Feb 2018

    CrossRef  Google Scholar 

  18. DellaVigna, S., Kaplan, E.: The fox news effect: media bias and voting. Q. J. Econ. 122(3), 1187–1234 (2007)

    CrossRef  Google Scholar 

  19. Deuze, M.: Online journalism: Modelling the first generation of news media on the world wide web. First Monday 6(10) (2001)

    Google Scholar 

  20. Di Tella, R., Franceschelli, I.: Government advertising and media coverage of corruption scandals. Am. Econ. J. Appl. Econ. 3(4), 119–151 (2011). http://www.jstor.org/stable/41288653. Accessed 16 Feb 2018

    CrossRef  Google Scholar 

  21. Druckman, J.N., Parkin, M.: The impact of media bias: how editorial slant affects voters. J. Polit. 67(4), 1030–1049 (2005)

    CrossRef  Google Scholar 

  22. Earl, J., Martin, A., McCarthy, J.D., Soule, S.A.: The use of newspaper data in the study of collective action. Ann. Rev. Sociol. 30, 65–80 (2004). 00546. http://www.jstor.org/stable/29737685

    CrossRef  Google Scholar 

  23. Ekström, M., Eriksson, G., Johansson, B., Wikström, P.: Biased interrogations? J. Stud. 14(3), 423–439 (2013). https://doi.org/10.1080/1461670X.2012.689488. Accessed 18 Mar 2018

    CrossRef  Google Scholar 

  24. Esser, F.: Dimensions of political news cultures: sound bite and image bite news in France, Germany, Great Britain, and the United States. Int. J. Press/Polit. 13(4), 401–428 (2008). https://doi.org/10.1177/1940161208323691. Accessed 17 Mar 2018

    CrossRef  Google Scholar 

  25. Fahmy, S., Johnson, T.J.: “how we performe”: embedded journalists’ attitudes and perceptions towards covering the Iraq war. J. Mass Commun. Q. 82(2), 301–317 (2005). https://doi.org/10.1177/107769900508200205. Accessed 17 Feb 2018

    CrossRef  Google Scholar 

  26. Fico, F., Richardson, J.D., Edwards, S.M.: Influence of story structure on perceived story bias and news organization credibility. Mass Commun. Soc. 7(3), 301–318 (2004). https://doi.org/10.1207/s15327825mcs0703_3

    CrossRef  Google Scholar 

  27. Flanagin, A.J., Metzger, M.J.: The role of site features, user attributes, and information verification behaviors on the perceived credibility of web-based information. New Media Soc. 9(2), 319–342 (2007). https://doi.org/10.1177/1461444807075015. 00355. http://nms.sagepub.com/content/9/2/319

    CrossRef  Google Scholar 

  28. Fogg, B.J.: Prominence-interpretation theory: explaining how people assess credibility online. In: CHI EA 2003, pp. 722–723. ACM, New York (2003). https://doi.org/10.1145/765891.765951. https://doi.org/10.1145/765891.765951, 00233

  29. Fogg, B.J., Soohoo, C., Danielson, D.R., Marable, L., Stanford, J., Tauber, E.R.: How do users evaluate the credibility of web sites?: A study with over 2,500 participants, pp. 1–15 (2003). http://dl.acm.org/citation.cfm?id=997097, 00420

  30. Fogg, B.J., Tseng, H.: The elements of computer credibility. In: CHI 1999, pp. 80–87. ACM, New York (1999). https://doi.org/10.1145/302979.303001, 00613

  31. Forward, R.: Editorial opinion and the Whitlam government. Politics 12(1), 136–141 (1977). https://doi.org/10.1080/00323267708401596. Accessed 16 Feb 2018

    CrossRef  Google Scholar 

  32. Friedman, H.S., Mertz, T.I., DiMatteo, M.R.: Perceived bias in the facial expressions of television news broadcasters. J. Commun. 30(4), 103–111 (1980). https://doi.org/10.1111/j.1460-2466.1980.tb02022.x. 00033

    CrossRef  Google Scholar 

  33. Fritch, J.W., Cromwell, R.L.: Evaluating internet resources: identity, affiliation, and cognitive authority in a networked world. J. Am. Soc. Inf. Sci. Technol. 52(6), 499–507 (2001). https://doi.org/10.1002/asi.1081. http://onlinelibrary.wiley.com/doi/10.1002/asi.1081/abstract, 00158

    CrossRef  Google Scholar 

  34. Gawronski, B., Creighton, L.A.: Dual-process theories, pp. 282–312 (2013)

    Google Scholar 

  35. Gaziano, C., McGrath, K.: Measuring the concept of credibility. J. Q. 63(3), 451–462 (1986)

    Google Scholar 

  36. Gentzkow, M., Shapiro, J.M.: What drives media slant? Evidence from U.S. daily newspapers. Econometrica 78(1), 35–71 (2010). https://doi.org/10.3982/ECTA7195. https://doi.org/10.3982/ECTA7195/abstract, 00707

    MathSciNet  CrossRef  Google Scholar 

  37. Gerber, A.S., Karlan, D., Bergan, D.: Does the media matter? A field experiment measuring the effect of newspapers on voting behavior and political opinions. Am. Econ. J.: Appl. Econ. 1(2), 35–52 (2009)

    Google Scholar 

  38. Goodnow, T.: Visual bias in time’s “the great divid”: a semiotic analysis of Clinton and Obama photographs. Am. Behav. Sci. 54(4), 406–416 (2010). https://doi.org/10.1177/0002764210381865. Accessed 21 Mar 2018

    CrossRef  Google Scholar 

  39. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971). https://doi.org/10.2307/2528823. https://www.jstor.org/stable/2528823

    CrossRef  Google Scholar 

  40. Grabe, M.E., Bucy, E.P.: Image Bite Politics: News and the Visual Framing of Elections. Oxford University Press, Oxford (2009). google-Books-ID: ahISDAAAQBAJ

    CrossRef  Google Scholar 

  41. Green-Pedersen, C., Mortensen, P.B., Thesen, G.: The incumbency bonus revisited: causes and consequences of media dominance. Br. J. Polit. Sci. 47(1), 131–148 (2017)

    CrossRef  Google Scholar 

  42. Greenwood, K.: Picturing presidents: a content analysis of photographs of presidents from the pictures of the year. Int. Commun. Assoc. 1–34 (2005)

    Google Scholar 

  43. Groeling, T.: Media bias by the numbers: challenges and opportunities in the empirical study of partisan news. Ann. Rev. Polit. Sci. 16(1), 129–151 (2013). https://doi.org/10.1146/annurev-polisci-040811-115123. http://www.annualreviews.org/doi/abs/10.1146/annurev-polisci-040811-115123, 00017

    CrossRef  Google Scholar 

  44. Hackett, R.A.: A hierarchy of access: aspects of source bias in Canadian TV news. J. Q. 62(2), 256–277 (1985). https://doi.org/10.1177/107769908506200205. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  45. Hays, R.G., Reisner, A.E.: Farm journalists and advertiser influence: pressures on ethical standards. J. Q. 68(1–2), 172–178 (1991). https://doi.org/10.1177/107769909106800118. Accessed 18 Mar 2018

    CrossRef  Google Scholar 

  46. Herman, E.S., Chomsky, N.: Manufacturing Consent: The Political Economy of the Mass Media. Pantheon, New York, reprint edition, January 2002

    Google Scholar 

  47. Hilligoss, B., Rieh, S.Y.: Developing a unifying framework of credibility assessment: construct, heuristics, and interaction in context. Inf. Process. Manage. 44, 1467–1484 (2008). http://rieh.people.si.umich.edu/papers/hilligossipm.pdf, 00258

    CrossRef  Google Scholar 

  48. Hovland, C.I., Janis, I.L., Kelley, H.H.: Communication and Persuasion: Psychological Studies of Opinion Change. Yale University Press, London (1953)

    Google Scholar 

  49. Hummel, M., Edelmann, D., Kopp-Schneider, A.: Clustering of samples and variables with mixed-type data. PLoS One 12(11) (2017). https://doi.org/10.1371/journal.pone.0188274. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705083/

  50. Johnson, T.J., Kaye, B.K.: Cruising is believing?: comparing internet and traditional sources on media credibility measures. J. Mass Commun. Q. 75(2), 325–340 (1998). 00552

    Google Scholar 

  51. Jung, W.S., Chung, M.Y., Rhee, E.S.: The effects of attractiveness and source expertise on online health sites. Health Commun. 1–10 (2017). pMID: 28569543. https://doi.org/10.1080/10410236.2017.1323364

  52. Kahn, K.F., Kenney, P.J.: The slant of the news: how editorial endorsements influence campaign coverage and citizens’ views of candidates. Am. Polit. Sci. Rev. 96(2), 381–394 (2002). https://doi.org/10.1017/S0003055402000230. https://www.cambridge.org/core/journals/american-political-science-review/article/slant-of-the-news-how-editorial-endorsements-influence-campaign-coverage-and-citizens-views-of-candidates/71FB7C8336B7B12EB239802C09A37F4D Online; accessed 2018-03-18

  53. Karimov, F.P., Brengman, M., Van Hove, L.: The effect of website design dimensions on initial trust: a synthesis of the empirical literature. J. Electron. Commerce Res. 12(4) (2011)

    Google Scholar 

  54. Kenix, L.J.: A converging image? Commercialism and the visual identity of alternative and mainstream news websites. J. Stud. 14(6), 835–856 (2013)

    Google Scholar 

  55. Kenney, K., Simpson, C.: Was coverage of the 1988 presidential race by Washington’s two major dailies biased? J. Q. 70(2), 345–355 (1993). https://doi.org/10.1177/107769909307000210. Accessed 14 Feb 2018

    CrossRef  Google Scholar 

  56. Kepplinger, H.M.: Visual biases in television campaign coverage. Commun. Res. 9(3), 432–446 (1982). https://doi.org/10.1177/009365082009003005. Accessed 17 Mar 2018

    CrossRef  Google Scholar 

  57. Kerrick, J.S., Anderson, T.E., Swales, L.B.: Balance and the writer’s attitude in news stories and editorials. J. Q. 41(2), 207–215 (1964). https://doi.org/10.1177/107769906404100207. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  58. Kingsbury, S., Hart, H.: Measuring the ethics of American newspapers iii. Newspaper bias on congressional controversies. J. Bull. 10(4), 323–342 (1933). https://doi.org/10.1177/107769903301000411. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  59. Klein, M.W., Maccoby, N.: Newspaper objectivity in the 1952 campaign. J. Bull. 31(3), 285–296 (1954). https://doi.org/10.1177/107769905403100301. Accessed 14 Feb 2018

    CrossRef  Google Scholar 

  60. Kriesberg, M.: Soviet news in the “new york times”. Public Opin. Q. 10(4), 540–564 (1946). https://doi.org/10.1093/poq/10.4.540. https://academic.oup.com/poq/article/10/4/540/1861359. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  61. Lavie, T., Tractinsky, N.: Assessing dimensions of perceived visual aesthetics of web sites. Int. J. Hum. Comput. Stud. 60(3), 269–298 (2004)

    CrossRef  Google Scholar 

  62. Leccese, M.: Online information sources of political blogs. J. Mass Commun. Q.; Thousand Oaks 86(3), 578–593 (2009). https://search.proquest.com/docview/216940194/abstract/7ECF2800BBE4A4APQ/1

    Google Scholar 

  63. Lott, J.R., Hassett, K.A.: Is newspaper coverage of economic events politically biased? Public Choice 160(1–2), 65–108 (2014). https://doi.org/10.1007/s11127-014-0171-5. Accessed 24 Apr 2018

    CrossRef  Google Scholar 

  64. Lowry, D.T.: Measures of network news bias in the 1972 presidential campaign. J. Broadcast. 18, 387 (1973). http://heinonline.org/HOL/Page?handle=hein.journals/jbem18&id=389&div=&collection=journals, 00012

    CrossRef  Google Scholar 

  65. Lucassen, T., Muilwijk, R., Noordzij, M.L., Schraagen, J.M.: Topic familiarity and information skills in online credibility evaluation. J. Am. Soc. Inf. Sci. Technol. 64(2), 254–264 (2013). https://doi.org/10.1002/asi.22743. http://onlinelibrary.wiley.com/doi/10.1002/asi.22743/abstract, 00025

    CrossRef  Google Scholar 

  66. McCarthy, J.D., McPhail, C.: The institutionalization of protest in the united states. In: Meyer, D.S., Tarrow, S. (eds.) The Social Movement Society: Contentious Politics for a New Century, pp. 83–110. Rowman and Littlefield Publishers (1997). Google-Books-ID: g0M3AgAAQBAJ

    Google Scholar 

  67. McCarthy, J.D., McPhail, C., Smith, J.: Images of protest: Dimensions of selection bias in media coverage of Washington demonstrations, 1982 and 1991. Am. Sociol. Rev. 61(3), 478–499 (1996). https://doi.org/10.2307/2096360. http://www.jstor.org/stable/2096360?origin=crossref. Accessed 10 Apr 2018

    CrossRef  Google Scholar 

  68. McCarthy, J.D., McPhail, C., Smith, J., Crishock, L.: Electronic and print media representations of Washington D.C. demonstrations, 1982 and 1991. In: Rucht, D., Koopmans, R., Neidhardt, F. (eds.) Acts of Dissent: New Developments in the Study of Protest, pp. 113–130. Rowman and Littlefield, Lanham (1999). http://d-scholarship.pitt.edu/20703/. Accessed 22 Apr 2018

  69. Meadors, J.D., Murray, C.B.: Measuring nonverbal bias through body language responses to stereotypes. J. Nonverbal Behav. 38(2), 209–229 (2014). https://doi.org/10.1007/s10919-013-0172-y. Accessed 22 May 2018

    CrossRef  Google Scholar 

  70. Merron, J., Gaddy, G.D.: Editorial endorsements and news play: bias in coverage of ferraro’s finances. J. Q. 63(1), 127–137 (1986). https://doi.org/10.1177/107769908606300119. Accessed 15 Feb 2018

    CrossRef  Google Scholar 

  71. Metzger, M.J.: Making sense of credibility on the web: models for evaluating online information and recommendations for future research. J. Am. Soc. Inf. Sci. Technol. 58(13), 2078–2091 (2007). https://doi.org/10.1002/asi.20672. https://doi.org/10.1002/asi.20672/abstract, 00506

    CrossRef  Google Scholar 

  72. Metzger, M.J., Flanagin, A.J.: Psychological approaches to credibility assessment online (2015). http://www.comm.ucsb.edu/faculty/flanagin/CV/MetzgerandFlanagin2015(HPCT).pdf, 00002

  73. Miller, A., Coleman, R., Granberg, D.: Tv anchors, elections & bias: a longitudinal study of the facial expressions of Brokaw rather Jennings. Vis. Commun. Q. 14(4), 244–257 (2007). https://doi.org/10.1080/15551390701730232. Accessed 20 Jan 2018

    CrossRef  Google Scholar 

  74. Mitchell, A., Simmons, K., Matsa, K.E., Silver, L.: People around world want unbiased news. Technical report, 1615 L St. NW, Suite 800 Washington, DC 20036 USA (2018). http://www.pewglobal.org/2018/01/11/. Accessed 08 Jan 2019

  75. Molyneux, L.: Mobile news consumption: a habit of snacking. Digit. J. 6(5), 634–650 (2018). https://doi.org/10.1080/21670811.2017.1334567

    CrossRef  Google Scholar 

  76. Moriarty, S.E., Garramone, G.M.: A study of newsmagazine photographs of the 1984 presidential campaign. J. Q. 63(4), 728–734 (1986). https://doi.org/10.1177/107769908606300408. Accessed 13 Feb 2018

    CrossRef  Google Scholar 

  77. Moriarty, S.E., Popovich, M.N.: Newsmagazine visuals and the 1988 presidential election. J. Q. 68(3), 371–380 (1991). https://doi.org/10.1177/107769909106800307. Accessed 21 Jan 2018

    CrossRef  Google Scholar 

  78. Moss, P.: Words, words, words: radio news discourses and how they work. Eur. J. Commun. 3(2), 207–230 (1988). https://doi.org/10.1177/0267323188003002006. Accessed 24 Mar 2018

    CrossRef  Google Scholar 

  79. Mullainathan, S., Shleifer, A.: The market for news. Am. Econ. Rev. 95(4), 1031–1053 (2005). http://www.jstor.org/stable/4132704. Accessed 13 Feb 2018

    CrossRef  Google Scholar 

  80. Mullen, B., et al.: Newcasters’ facial expressions and voting behavior of viewers: can a smile elect a president? J. Pers. Soc. Psychol. 51(2), 291 (1986)

    CrossRef  Google Scholar 

  81. Narwal, V., et al.: Automated assistants to identify and prompt action on visual news bias. arXiv:1702.06492 [cs], pp. 2796–2801 (2017). https://doi.org/10.1145/3027063.3053227, http://arxiv.org/abs/1702.06492

  82. Nelson, J.L., Lei, R.F.: The effect of digital platforms on news audience behavior. Digit. J. 6(5), 619–633 (2018). https://doi.org/10.1080/21670811.2017.1394202

    CrossRef  Google Scholar 

  83. Newhagen, J., Nass, C.: Differential criteria for evaluating credibility of newspapers and tv news. J. Q. 66(2), 277–284 (1989)

    Google Scholar 

  84. Nokelainen, T., Kanniainen, J.: Coverage bias in business news: evidence and methodological implications. Manage. Res. Rev. 41(4), 487–503 (2018). https://doi.org/10.1108/MRR-02-2017-0048. Accessed 27 Apr 2018

    CrossRef  Google Scholar 

  85. Park, S., Kang, S., Chung, S., Song, J.: NewsCube: delivering multiple aspects of news to mitigate media bias. In: CHI 2009, pp. 443–452. ACM, New York (2009). https://doi.org/10.1145/1518701.1518772, 00036

  86. Park, S., Ko, M., Kim, J., Choi, H., Song, J.: Newscube2. 0: an exploratory design of a social news website for media bias mitigation (2011). http://nclab.kaist.ac.kr/papers/Conference/NC2.pdf, 00003

  87. Patterson, T.E., Donsbagh, W.: News decisions: journalists as partisan actors. Polit. Commun. 13(4), 455–468 (1996). https://doi.org/10.1080/10584609.1996.9963131. 00306

    CrossRef  Google Scholar 

  88. Petty, R.E., Cacioppo, J.T.: The elaboration likelihood model of persuasion. In: Petty, R.E., Cacioppo, J.T. (eds.) Communication and Persuasion. Springer Series in Social Psychology, pp. 1–24. Springer, New York (1986). https://doi.org/10.1007/978-1-4612-4964-1_1

    CrossRef  Google Scholar 

  89. Pfau, M., et al.: Embedding journalists in military combat units: impact on newspaper story frames and tone. J. Mass Commun. Q. 81(1), 74–88 (2004). https://doi.org/10.1177/107769900408100106. Accessed 18 Mar 2018

    CrossRef  Google Scholar 

  90. Podani, J.: Extending Gower’s general coefficient of similarity to ordinal characters. TAXON 48(2), 331–340 (1999). https://doi.org/10.2307/1224438. https://onlinelibrary.wiley.com/doi/abs/10.2307/1224438

    CrossRef  Google Scholar 

  91. Price, C.J.: Interfering owners or meddling advertisers: how network television news correspondents feel about ownership and advertiser influence on news stories. J. Media Econ. 16(3), 175–188 (2003). https://doi.org/10.1207/S15327736ME1603_3. Accessed 17 Mar 2018

    CrossRef  Google Scholar 

  92. Puglisi, R., Snyder, J.M.: Newspaper coverage of political scandals. J. Polit. 73(3), 931–950 (2011). https://doi.org/10.1017/S0022381611000569. https://www.journals.uchicago.edu/doi/abs/10.1017/S0022381611000569. Accessed 18 May 2018

    CrossRef  Google Scholar 

  93. Reuter, J., Zitzewitz, E.: Do ads influence editors? Advertising and bias in the financial media. Q. J. Econ. 121(1), 197–227 (2006). https://doi.org/10.1093/qje/121.1.197. https://academic.oup.com/qje/article/121/1/197/1849013. Accessed 21 Jan 2018

    CrossRef  Google Scholar 

  94. Rieh, S.Y.: Judgment of information quality and cognitive authority in the web. J. Am. Soc. Inf. Sci. Technol. 53(2), 145–161 (2002). https://onlinelibrary.wiley.com/doi/full/10.1002/asi.10017, 00637

    CrossRef  Google Scholar 

  95. Robins, D., Holmes, J.: Aesthetics and credibility in web site design. Inf. Process. Manage. 44(1), 386–399 (2008). https://doi.org/10.1016/j.ipm.2007.02.003. http://www.sciencedirect.com/science/article/pii/S0306457307000568, 00218

    CrossRef  Google Scholar 

  96. Robinson, C.: Visual press bias in a multi-party electoral context. Design and Democracy, p. 37 (2016), https://static1.squarespace.com/static/578aa0eac534a56f885f3d9b/t/579db422b8a79bb7da57671c/1469953062061/Visualforpublishing.pdf

  97. Rucinski, D.: Personalized bias in news: the potency of the particular? Commun. Res. 19(1), 91–108 (1992). https://doi.org/10.1177/009365092019001004. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  98. Sachsman, D.B.: A test of ‘loading’: new measure of bias. J. Q. 47(4), 759–762 (1970). https://doi.org/10.1177/107769907004700415. http://journals.sagepub.com/doi/10.1177/107769907004700415. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  99. Schindler, J., Krämer, B., Müller, P.: Looking left or looking right? Effects of newspaper layout style on the perception of political news. Eur. J. Commun. 32(4), 348–366 (2017). https://doi.org/10.1177/0267323117718463. Accessed 17 Mar 2018

    CrossRef  Google Scholar 

  100. Schudson, M., Anderson, C.: Objectivity, professionalism, and truth seeking in journalism, pp. 108–121. Routledge (2009)

    Google Scholar 

  101. Soloski, J.: News reporting and professionalism: Some constraints on the reporting of the news, vol. 11, pp. 207–228 (1989)

    Google Scholar 

  102. Spillane, B., Hoe, I., Brady, M., Wade, V., Lawless, S.: Tabloidization versus credibility: short term gain for long term pain. In: CHI Conference on Human Factors in Computing Systems (CHI 2020), 25–30 April 2020, Honolulu, HI, USA. ACM, April 2020. https://doi.org/10.1145/3313831.3376388

  103. Spillane, B., Lawless, S., Wade, V.: Perception of bias: the impact of user characteristics, website design and technical features, WI 2017, pp. 227–236. ACM, New York (2017). https://doi.org/10.1145/3106426.3106474, Accessed 18 Sept 2017

  104. Spillane, B., Lawless, S., Wade, V.: Increasing and decreasing perceived bias by distorting the quality of news website design. In: British HCI 2018, Belfast, Northern Ireland, p. 13, July 2018

    Google Scholar 

  105. Stempel-III, G.H.: The prestige press covers the 1960 presidential campaign. J. Q. 38(2), 157–163 (1961). https://doi.org/10.1177/107769906103800201. Accessed 09 Mar 2018

    CrossRef  Google Scholar 

  106. Stoodley, B.H.: Bias in reporting the FCC investigation. Public Opin. Q. 24(1), 92–98 (1960). https://doi.org/10.1086/266933. https://academic.oup.com/poq/article/24/1/92/1824637. Accessed 12 Mar 2018

  107. Sundar, S.S.: The main model: a heuristic approach to understanding technology effects on credibility. Digital media, youth, and credibility, pp. 73–100 (2008). http://www.marketingsociale.net/download/modello_MAIN.pdf, 00327

  108. Tannenbaum, P.H.: The effect of headlines on the interpretation of news stories. J. Bull. 30(2), 189–197 (1953). https://doi.org/10.1177/107769905303000206. http://journals.sagepub.com/doi/10.1177/107769905303000206. Accessed 12 Mar 2018

    CrossRef  Google Scholar 

  109. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Science 185(4157), 1124–1131 (1974). https://doi.org/10.1126/science.185.4157.1124. pMID: 17835457. http://science.sciencemag.org/content/185/4157/1124

    CrossRef  Google Scholar 

  110. Van Dijk, T.A.: New(s) Racism: a discourse analytical approach. Ethnic Minorit. Media 37, 33–49 (2000). http://dare.uva.nl/search?metis.record.id=203737. Accessed 20 Apr 2018

    Google Scholar 

  111. Vuontela, S.: Women’s hidden agency in the news coverage of the Tibetian riots. Nordlit, pp. 129–142, October 2012. https://doi.org/10.7557/13.2376. https://septentrio.uit.no/index.php/nordlit/article/view/2376

  112. Waisbord, S.: Reinventing Professionalism: Journalism and News in Global Perspective. Wiley, Hoboken (2013)

    Google Scholar 

  113. Wathen, C.N., Burkell, J.: Believe it or not: factors influencing credibility on the web. J. Am. Soc. Inf. Sci. Technol. 53(2), 134–144 (2002). http://onlinelibrary.wiley.com/doi/10.1002/asi.10016/full. Accessed 17 Jan 2013

    CrossRef  Google Scholar 

  114. Weisbuch, M., Pauker, K., Ambady, N.: The subtle transmission of race bias via televised nonverbal behavior. Science 326(5960), 1711–1714 (2009). https://doi.org/10.1126/science.1178358. pMID: 20019288. http://science.sciencemag.org/content/326/5960/1711

    CrossRef  Google Scholar 

  115. White, D.M.: The “Gate Keeper”: a case study in the selection of news. J. Bull. 27(4), 383–390 (1950). https://doi.org/10.1177/107769905002700403. http://journals.sagepub.com/doi/10.1177/107769905002700403, Accessed 18 Mar 2018

    CrossRef  Google Scholar 

  116. Zaller, J.: A Theory of Media Politics: How the Interests of Politicians, Journalists, and Citizens Shape the News. University of Chicago Press (1999). Google-Books-ID: 9KmwXwAACAAJ

    Google Scholar 

  117. Zimmerman, J.: Media bias through facial expressions on local Las Vegas television news (2013)

    Google Scholar 

Download references

Acknowledgements

This research was conducted with the financial support of Science Foundation Ireland under Grant Agreement No. 13/RC/2106 at the ADAPT SFI Research Centre at Trinity College Dublin. The ADAPT SFI Centre for Digital Media Technology is funded by Science Foundation Ireland through the SFI Research Centres Programme and is co-funded under the European Regional Development Fund (ERDF) through Grant Number 13/RC/2106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Spillane .

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to the memory of Professor Séamus “Shay” Lawless who died after fulfilling his dream of summiting Mount Everest on May 16$$^{th}$$ 2019.

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Spillane, B., Lawless, S., Wade, V. (2020). The Impact of Increasing and Decreasing the Professionalism of News Webpage Aesthetics on the Perception of Bias in News Articles. In: Kurosu, M. (eds) Human-Computer Interaction. Design and User Experience. HCII 2020. Lecture Notes in Computer Science(), vol 12181. Springer, Cham. https://doi.org/10.1007/978-3-030-49059-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49059-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49058-4

  • Online ISBN: 978-3-030-49059-1

  • eBook Packages: Computer ScienceComputer Science (R0)