Skip to main content

Maximizing the End-Effector Cartesian Stiffness Range for Kinematic Redundant Robot with Compliance

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 84))

Included in the following conference series:

Abstract

Compliant robots with constant joint stiffness (Serial Elastic Actuators - SEA), on the contrary to ones with variable joint stiffness (Variable Stiffness Actuators – VSA), have limited capabilities for modulating robot mechanical impedance in the interaction task. However, in the case of kinematic redundancy in specific tasks, robots can exploit the null space to adjust End-Effector (EE) Cartesian stiffness. Thus, prior knowledge of the task path or the operational workspace can be used to pre-compute joint stiffness that can enable maximal ratio between maximal and minimal stiffness of the robot’s EE during the task execution, and therefore shape achievable EE stiffness to best fit the task execution. In that light, this paper elaborates on the preselection of joint stiffnesses which influences the achievable robot’s Cartesian stiffness in a specific task. Besides optimizing the available operational EE stiffness, by pre-computed joint stiffness values, the robot will be able to adapt better to specific tasks and provide a better framework for safe and efficient physical human-robot interaction. The paper presents an approach to the selection of predefined joint stiffness values of the 7-DOFs KUKA LWR, where joint stiffness is achieved/emulated with torque feedback. In the simulation experiments, the approach is depicted in the preselection of two joint stiffness values within the prescribed range, while other joint stiffness is set constant.

This paper was funded by the Program for excellent projects of young researchers (PROMIS), Science Fund and Ministry of Education, Science and Technological Development of the Republic of Serbia, and bilateral project ARRS BI-RS/18-19-053.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedrocchi, N., Vicentini, F., Malosio, M., Tosatti, L.M.: Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. 10(1), 27 (2013)

    Article  Google Scholar 

  2. Edsinger, A., Kemp, C.C.: Human-robot interaction for cooperative manipulation: handing objects to one another. In: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 1167–1172 (2007)

    Google Scholar 

  3. Ferro, F., Marchionni, L.: REEM: a humanoid service robot. In: ROBOT 2013: First Iberian Robotics Conference. Springer, Cham (2014)

    Google Scholar 

  4. Yu, H., Huang, S., Chen, G., Pan, Y., Guo, Z.: Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Robot. 31(5), 1089–1100 (2015)

    Article  Google Scholar 

  5. De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)

    Article  Google Scholar 

  6. Hogan, N.: Impedance control: an approach to manipulation: Part II—implementation. J. Dyn. Syst. Measur. Control 107(1), 8–16 (1985)

    Article  Google Scholar 

  7. Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 561–568 (1999)

    Google Scholar 

  8. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 399–406 (1995)

    Google Scholar 

  9. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  10. Grioli, G., Wolf, S., Garabini, M., Catalano, M., Burdet, E., Caldwell, D., Carloni, R., Friedl, W., Grebenstein, M., Laffranchi, M., Lefeber, D., Stramigioli, S., Tsagarakis, N., VanDamme, M., Vanderborght, B., Albu-Schaeffer, A., Bicchi, A.: Variable stiffness actuators: the user’s point of view. Int. J. Robot. Res. 34(6), 727–743 (2015)

    Article  Google Scholar 

  11. Lakatos, D., Petit, F., Albu-Schäffer, A.: Nonlinear oscillations for cyclic movements in human and robotic arms. IEEE Trans. Robot. 30, 865–879 (2014)

    Article  Google Scholar 

  12. Lukić, B., Petrič, T., Žlajpah, L., Jovanović, K.: KUKA LWR robot Cartesian stiffness control based on kinematic redundancy. In: Berns, K., Görges, D. (eds.) Advances in Service and Industrial Robotics, RAAD 2019. Advances in Intelligent Systems and Computing, vol. 980. Springer, Cham (2020)

    Google Scholar 

  13. Knežević, N., Lukić, B., Jovanović, K., Petrič, T., Žlajpah, L.: End-effector Cartesian stiffness optimization: sequential quadratic programming approach. In: The 6th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN 2019), p. 736. ETRAN Society (2019)

    Google Scholar 

  14. Chiaverini, S., Oriolo, G., Maciejewski, A.A.: Redundant robots. In: Springer Handbook of Robotics, 2nd edn., pp. 221–242. Springer, Cham (2016)

    Google Scholar 

  15. Petit, F., Albu-Schäffer, A.: Cartesian impedance control for a variable stiffness robot arm. In: Proceedings of International Conference on Intelligent Robots and Systems 2011 (IROS 2011), pp. 4180–4186 (2011)

    Google Scholar 

  16. Albu-Schaffer, A., Fischer, M., Schreiber, G., Schoeppe, F., Hirzinger, G.: Soft robotics: what Cartesian stiffness can obtain with passively compliant, uncoupled joints? In: Proceedings of International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 4, pp. 3295–3301 (2004)

    Google Scholar 

  17. Nemec, B., Žlajpah, L., Ude, A.: Door opening by joining reinforcement learning and intelligent control. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 222–228. IEEE (2017)

    Google Scholar 

  18. Todorov, E.: Mujoco advanced physics simulation. http://www.mujoco.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Lukić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukić, B., Jovanović, K., Knežević, N., Žlajpah, L., Petrič, T. (2020). Maximizing the End-Effector Cartesian Stiffness Range for Kinematic Redundant Robot with Compliance. In: Zeghloul, S., Laribi, M., Sandoval Arevalo, J. (eds) Advances in Service and Industrial Robotics. RAAD 2020. Mechanisms and Machine Science, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-48989-2_23

Download citation

Publish with us

Policies and ethics