Skip to main content

Adhesion of Food Powders

  • Chapter
  • First Online:
Food Powders Properties and Characterization

Part of the book series: Food Engineering Series ((FSES))

  • 629 Accesses

Abstract

This chapter discusses the recent advances in food powder adhesion (particle-surface interactions) and cohesion (particle-particle interactions) which affect their functional properties and bulk behaviour of powder materials in industrial applications. Some of food processes depend on particle adhesion (i.e. coating on snack food surfaces with seasonings). Cohesion is desired in agglomeration and granulation of food powders. However unwanted adhesion and cohesion may cause problems in some food processes. The inter-molecular interactions between particle-particle and particle-surface and particle properties affecting particle adhesion are highlighted. The adhesion and cohesion mechanisms of food powder particles and methods used to measure those properties are considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari, B., Howes, T., Bhandari, B., & Truong, V. (2001). Stickiness in foods: A review of mechanisms and test methods. International Journal of Food Properties, 4, 1–33. https://doi.org/10.1081/JFP-100002186.

    Article  CAS  Google Scholar 

  • Beach, E. R., Tormoen, G. W., Drelich, J., & Han, R. (2002). Pull-off force measurements between rough surfaces by atomic force microscopy. Journal of Colloid and Interface Science, 247, 84–99.

    Article  CAS  Google Scholar 

  • Biehl, H. L., & Barringer, S. A. (2003). Physical properties important to electrostatic and nonelectrostatic powder transfer efficiency in a tumble drum. Journal of Food Science, 68, 2512–2515.

    Article  CAS  Google Scholar 

  • Bowling, R. A. (1988). A theoretical review of particle adhesion. Particles on Surfaces, 1, 129–142.

    Article  Google Scholar 

  • Buck, V. E., & Barringer, S. A. (2007). Factors dominating adhesion of NaCl onto potato chips. Journal of Food Science, 72(8), E435–E441.

    Article  CAS  Google Scholar 

  • Burdick, G. M., Berman, N. S., & Beaudoin, S. P. (2005). Hydrodynamic particle removal from surfaces. Thin Solid Films, 488, 116–123.

    Article  CAS  Google Scholar 

  • Cyprien, G., & Ludwik, L. (1999). On stickiness. Physics Today, 52(11), 48–52. https://doi.org/10.1063/1.882884.

    Article  Google Scholar 

  • Denis, C., Hemati, M., Chulia, D., Lanne, J. Y., Buisson, B., Daste, G., & Elbaz, F. (2003). A model of surface renewal with application to the coating of pharmaceutical tablets in rotary drums. Powder Technology, 130, 174–180.

    Article  CAS  Google Scholar 

  • Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53, 314–326.

    Article  CAS  Google Scholar 

  • Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51, 432–441.

    Article  CAS  Google Scholar 

  • Dopfer, D., Palzer, S., Heinrich, S., Fries, L., Antonyuk, S., Haider, C., & Salman, A. D. (2013). Adhesion mechanisms between water soluble particles. Powder Technology, 238, 35–49.

    Article  CAS  Google Scholar 

  • Dreier, W. (1991). The nuts and bolts of coating and enrobing. Prepared Foods, 160, 47–48.

    Google Scholar 

  • Duri, A., George, M., Saad, M., Gastaldi, E., Ramonda, M., & Cuq, B. (2013). Adhesion properties of wheat-based particles. Journal of Cereal Science, 58(1), 96–103. https://doi.org/10.1016/j.jcs.2013.03.015.

    Article  CAS  Google Scholar 

  • Elayedath, S., & Barringer, S. A. (2002). Electrostatic powder coating of shredded cheese with antimycotic and anticaking agents. Innovative Food Science and Emerging Technologies, 3, 385–390.

    Article  CAS  Google Scholar 

  • Enggalhardjo, M., & Narsimhan, G. (2005). Adhesion of dry seasoning particles onto tortilla chip. Food Engineering and Physical Properties, 70(3), E215–E222. https://doi.org/10.1111/j.1365-2621.2005.tb07138.x.

    Article  CAS  Google Scholar 

  • Ermis, E. (2011). Establishment of a repeatable test procedure for measuring adhesion strength of particulates in contact with surfaces. London: University of Greenwich.

    Google Scholar 

  • Ermis, E., Farnish, R. J., Berry, R. J., & Bradley, M. S. A. (2011). Centrifugal tester versus a novel design to measure particle adhesion strength and investigation of effect of physical characteristics (size, shape, density) of food particles on food surfaces. Journal of Food Engineering, 104(4), 518–524.

    Article  Google Scholar 

  • Griffith, E. (1991). Cake formation in particulate systems (p. 237). New York: VCH Publishers.

    Google Scholar 

  • Halim, F., & Barringer, S. A. (2007). Electrostatic adhesion in food. Journal of Electrostatics, 65(3), 168–173.

    Article  CAS  Google Scholar 

  • Halim, F., & Barringer, S. A. Ã. (2015). Electrostatic adhesion in food. Journal of Electrostatics, 65, 168–173.

    Article  CAS  Google Scholar 

  • Hamaker, H. C. (1937). The London-van der Waals attraction between spherical particles. Physica, 4, 1058–1072.

    Article  CAS  Google Scholar 

  • Hu, S., Kim, T. H., Park, J. G., & Busnaina, A. A. (2010). Effect of different deposition mediums on the adhesion and removal of particles. Journal of the Electrochemical Society, 157(6), H662–H665. https://doi.org/10.1149/1.3377090.

    Article  CAS  Google Scholar 

  • Hui, Y. H. (2006). Handbook of food products manufacturing. Hoboken: Wiley.

    Google Scholar 

  • Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and the contact of elastic solids. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. London: Royal Society.

    Google Scholar 

  • Kappl, M., & Butt, H. J. (2002). The colloidal probe technique and its application to adhesion force measurements. Particle and Particle Systems Characterization, 19, 129.

    Article  CAS  Google Scholar 

  • Karasu, E. N., & Ermis, E. (2019). Determination of the effect of exopolysaccharide (EPS) from lactobacillus brevis E25 on adhesion of food powders on the surfaces, using the centrifuge technique. Journal of Food Engineering, 242, 106–114.

    Article  CAS  Google Scholar 

  • Kendall, K., & Stainton, C. (2001). Adhesion and aggregation of fine particles. Powder Technology, 121(2–3), 223–229.

    Article  CAS  Google Scholar 

  • Khan, M. K. I., Schutyser, M. A. I., Schroën, K., & Boom, R. M. (2012). Electrostatic powder coating of foods - state of the art and opportunities. Journal of Food Engineering, 111, 1–5.

    Google Scholar 

  • Kilcast, D., & Roberts, C. (1998). Perception and measurement of stickiness in sugar-rich foods. Journal of Texture Studies, 29, 81–100.

    Article  Google Scholar 

  • Knoll, J., Knott, S., & Nirschl, H. (2015). Characterization of the adhesion force between magnetic microscale particles and the in fluence of surface-bound protein. Powder Technology, 283, 163–170. https://doi.org/10.1016/j.powtec.2015.05.028.

    Article  CAS  Google Scholar 

  • Kobayakawa, M., Kiriyama, S., Yasuda, M., & Matsusaka, S. (2015). Microscopic analysis of particle detachment from an obliquely oscillating plate. Chemical Engineering Science, 123, 388–394.

    Article  CAS  Google Scholar 

  • Kumar, A., Staedler, T., & Jiang, X. (2013). Role of relative size of asperities and adhering particles on the adhesion force. Journal of Colloid and Interface Science, 409, 211–218.

    Article  CAS  Google Scholar 

  • LaMarche, K. R., Muzzio, F. J., Shinbrot, T., & Glasser, B. J. (2010). Granular flow and dielectrophoresis: The effect of electrostatic forces on adhesion and flow of dielectric granular materials. Powder Technology, 199, 180–188.

    Article  CAS  Google Scholar 

  • Lifshitz, E. M. (1955). The theory of molecular attractive forces between solids. Journal of Experimental and Theoretical Physics, 2, 94–110.

    Google Scholar 

  • Liu, G., Li, S., & Yao, Q. (2011). A JKR-based dynamic model for the impact of micro-particle with a flat surface. Powder Technology, 207, 215–223.

    Article  CAS  Google Scholar 

  • Lusas, E., & Lloyd, R. (2001). Snack Foods Processing (Google eBook) (p. 639). Boca Raton: CRC Press. Available at: http://books.google.com/books?id=W_5wlzckPkMC&pgis=1.

    Book  Google Scholar 

  • Megias-Alguacil, D., & Gauckler, L. J. (2009). Capillary forces between two solid spheres linked by a concave liquid bridge: Regions of existence and forces mapping. AIChE Journal, 55, 1103–1109.

    Article  CAS  Google Scholar 

  • Miller, M. J., & Barringer, S. A. (2002). Effect of sodium chloride particle size and shape on nonelectrostatic and electrostatic coating of popcorn. Journal of Food Science, 67(1), 198–201.

    Article  CAS  Google Scholar 

  • Niman, C. E. (2000). In search of the perfect salt for topping snack foods. Cereal Foods World, 45(10), 466–469.

    Google Scholar 

  • Nussinovitch, A. (2017). Adhesion in foods. In Fundamental principles and applications. West Sussex: Wiley.

    Chapter  Google Scholar 

  • Packham, D. E. (2003). Surface energy, surface topography and adhesion. International Journal of Adhesion and Adhesives, 23, 437–448.

    Article  CAS  Google Scholar 

  • Payam, A. F., & Fathipour, M. (2011). A capillary force model for interactions between two spheres. Particuology, 9, 381–386.

    Article  Google Scholar 

  • Peleg, M. (1977). Flowability of food powders and methods for its evaluation — A review. Journal of Food Process Engineering, 1(4), 303–328.

    Article  Google Scholar 

  • Petean, P. G. C., & Aguiar, M. L. (2015). Determining the adhesion force between particles and rough surfaces. Powder Technology, 274, 67–76. Available at: https://doi.org/10.1016/j.powtec.2014.12.047.

    Article  CAS  Google Scholar 

  • Pietsch, W. (2003). An interdisciplinary approach to size enlargement by agglomeration. Powder Technology, 130, 8–13.

    Article  CAS  Google Scholar 

  • Prasad, L. K., McGinity, J. W., & Williams, R. O. (2016). Electrostatic powder coating: Principles and pharmaceutical applications. International Journal of Pharmaceutics, 505(1–2), 289–302. Available at: https://linkinghub.elsevier.com/retrieve/pii/S037851731630299X.

    Article  CAS  Google Scholar 

  • Rabinovich, Y. I., Esayanur, M. S., & Moudgil, B. M. (2005). Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment. Langmuir, 21, 10992–10997.

    Article  CAS  Google Scholar 

  • Riaz, M. N. (2015). Snack foods: rocessing. In Encyclopedia of food grains (2nd ed.). San Diego: Elsevier Science.

    Google Scholar 

  • Ripperger, S., & Hein, K. (2008). Measurement of adhesion forces in air with the vibration method. China Particuology, 3(1), 3–9.

    Google Scholar 

  • Rumpf, H., & Knepper, W. (1962). The strength of granules and agglomerates. In International symposium on agglomeration (pp. 379–418). Rugby: Institution of Chemical Engineers.

    Google Scholar 

  • Salazar-Banda, G. R., Felicetti, M. A., Gonçalves, J. A. S., Coury, J. R., & Aguiar, M. L. (2007). Determination of the adhesion force between particles and a flat surface, using the centrifuge technique. Powder Technology, 173(2), 107–117.

    Article  CAS  Google Scholar 

  • Schubert, H. (1987). Food particle technology. Part I: Properties of particles and particulate food systems. Journal of Food Engineering, 6(1), 1–32.

    Article  Google Scholar 

  • Shukla, N., & Henthorn, K. H. (2009). Effect of relative particle size on large particle detachment from a microchannel. Microfluidics and Nanofluidics, 6(4), 521–527.

    Article  CAS  Google Scholar 

  • Simons, S. J. R. (2007). Liquid bridges in granules. In Granulation (Vol. 11). Amsterdam: Elsevier. (Handbook of Powder Technology).

    Chapter  Google Scholar 

  • Suganya, A., Shanmugvelayutham, G., & Hidalgo-Carrillo, J. (2018). Plasma surface modified polystyrene and grafted with chitosan coating for improving the shelf lifetime of postharvest grapes. Plasma Chemistry and Plasma Processing, 38(5), 1151–1168. Available at: http://link.springer.com/10.1007/s11090-018-9908-0.

    Article  CAS  Google Scholar 

  • Sumawi, H., & Barringer, S. A. (2005). Positive vs. negative electrostatic coating using food powders. Journal of Electrostatics, 63, 815–821.

    Article  CAS  Google Scholar 

  • Takeuchi, M. (2006). Adhesion forces of charged particles. Chemical Engineering Science, 61, 2279–2289.

    Article  CAS  Google Scholar 

  • Teunou, E., Fitzpatrick, J. J., & Synnott, E. C. (1999). Characterization offood powder flowability. Journal of Food Engineering, 39(1), 31–37.

    Article  Google Scholar 

  • Vahdat, A. S., Azizi, S., & Cetinkaya, C. (2013). Nonlinear dynamics of adhesive micro-spherical particles on vibrating substrates. Journal of Adhesion Science and Technology, 27(15), 1712–1726.

    Article  CAS  Google Scholar 

  • Wang, J. P., Gallo, E., François, B., Gabrieli, F., & Lambert, P. (2017). Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technology, 305, 89–98.

    Article  CAS  Google Scholar 

  • Wanka, S., Kappl, M., Wolkenhauer, M., & Butt, H. (2013). Measuring adhesion forces in powder collectives by inertial detachment. Langmuir, 29, 16075–16083.

    Article  CAS  Google Scholar 

  • Wong, D. C. Y., Adams, M. J., Seville, J. P. K., & Fryer, P. J. (2005). A computational model of flavour deposition onto food surfaces. Food and Bioproducts Processing, 83, 99–106.

    Article  CAS  Google Scholar 

  • Yousuf, S., & Barringer, S. A. (2007). Modeling nonelectrostatic and electrostatic powder coating. Journal of Food Engineering, 83, 550–561.

    Article  CAS  Google Scholar 

  • Zafar, U., Hare, C., Hassanpour, A., & Ghadiri, M. (2014). Drop test: A new method to measure the particle adhesion force. Powder Technology, 264, 236–241. https://doi.org/10.1016/j.powtec.2014.04.022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ermiş, E. (2021). Adhesion of Food Powders. In: Ermiş, E. (eds) Food Powders Properties and Characterization. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-48908-3_3

Download citation

Publish with us

Policies and ethics