Skip to main content

Partitioned GMM for Correlated Data with Bayesian Intervals

  • Chapter
  • First Online:
Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates

Abstract

A Partitioned GMM logistic regression model with Bayes intervals for marginal means with time-dependent covariates is presented. The model is flexible and attainable in obtaining credible intervals of the regression coefficients for time-dependent covariates. It converges in cases where the frequentist model does not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anchen, C. H. (2001). Why lagged dependent variables can suppress the explanatory power of other independent variables. In Annual Meeting of the Political Methodology Science Association, Los Angeles, CA.

    Google Scholar 

  • Azzalini, A. (1994). Logistic regression for autocorrelated data with application to repeated measures. Biometrika, 81(4), 767–775.

    Article  MathSciNet  MATH  Google Scholar 

  • Caragea, P. C., Smith, R. L. (2007). Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models. J Multivar Anal. 98(7):1417–1440.

    Google Scholar 

  • Chandler, R. E., Bate, S. (2007). Inference for clustered data using the independence loglikelihood. Biometrika, 94(1), 167–183.

    Google Scholar 

  • Cox, D. R., Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika, 91(3), 729–737.

    Google Scholar 

  • Diggle, P., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Efron, B. (2015). Frequentist accuracy of Bayesian estimates. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 77(3), 617–649.

    Article  MathSciNet  MATH  Google Scholar 

  • Givens, G. H., & Hoeting, J. A. (2013). Computational statistics (2nd ed.). Chichester, UK: Wiley.

    MATH  Google Scholar 

  • Hall, A. R. (2005). Generalized method of moments. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029–1054.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, L. P., Heaton, J., & Yaron, A. (1996). Finite-sample properties of some alternative GMM estimators. Journal of Business and Economic Statistics, 14(3), 262–280.

    Google Scholar 

  • Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics, 58(2), 342–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Heagerty, P. J., & Comstock, B. A. (2013). Exploration of lagged associations using longitudinal data. Biometrics, 69(1), 197–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Heagerty, P. J., & Zeger, S. L. (2000). Marginalized multilevel models and likelihood inference. Statistical Science, 15(1), 1–26.

    MathSciNet  Google Scholar 

  • Hoff, P. D. (2009). A first course in Bayesian statistical methods. New York: Springer.

    Book  MATH  Google Scholar 

  • Hong, I., Coker-Bolt, P., Anderson, K. R., Lee, D., & Velozo, C. A. (2016). Relationship between physical activity and overweight and obesity in children: Findings from the 2012 National Health and Nutrition Examination Survey National Youth Fitness Survey. The American Journal of Occupational Therapy, 70(5), 7005180060p1–7005180060p8.

    Article  Google Scholar 

  • Irimata, K. M., Broatch, J., & Wilson, J. R. (2019). Partitioned GMM logistic regression models for longitudinal data. Statistics in Medicine, 38(12), 2171–2183.

    Article  MathSciNet  Google Scholar 

  • Keele, L., & Kelly, N. J. (2006). Dynamic models for dynamic theories: The ins and outs of lagged dependent variables. Political Analysis, 14(2), 186–205.

    Article  Google Scholar 

  • Lai, T. L., & Small, D. (2007). Marginal regression analysis of longitudinal data with time-dependent covariates: A generalised method of moments approach. Journal of the Royal Statistical Society, Series B, 69(1), 79–99.

    Article  MathSciNet  Google Scholar 

  • Lalonde, T. L., Wilson, J. R., & Yin, J. (2014). GMM logistic regression models for longitudinal data with time-dependent covariates. Statistics in Medicine, 33(27), 4756–4769.

    Article  MathSciNet  Google Scholar 

  • Liang, G., Yu, B. (2003). Maximum pseudo likelihood estimation in network tomography. IEEE Trans Signal Process, 51(8), 2043–2053.

    Google Scholar 

  • Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Lincoln, K. D., Abdou, C. M., & Lloyd, D. (2014). Race and socioeconomic differences in obesity and depression among Black and non-Hispanic White Americans. Journal of Health Care for the Poor and Underserved, 25(1), 257–275.

    Article  Google Scholar 

  • Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67(3), 220–229.

    Article  Google Scholar 

  • McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57(5), 995–1026.

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy, S., & Li, B. (1995). Projected partial likelihood and its application to longitudinal data. Biometrika, 82(2), 399–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Obermeier, V., Scheipl, F., Heumann, C., Wassermann, J., & Küchenhoff, H. (2015). Flexible distributed lags for modelling earthquake data. Journal of the Royal Statistical Society Series C (Applied Statistics), 64(2), 395–412.

    Article  MathSciNet  Google Scholar 

  • Schildcrout, J. S., & Heagerty, P. J. (2005). Regression analysis of longitudinal binary data with time-dependent environmental covariates: Bias and efficiency. Biostatistics, 6(4), 633–652.

    Article  MATH  Google Scholar 

  • Singh, G. K., Siahpush, M., & Kogan, M. D. (2010). Rising social inequalities in US childhood obesity, 2003-2007. Annals of Epidemiology, 20(1), 40–52.

    Article  Google Scholar 

  • Tanaka, M. (2020). Adaptive MCMC for Generalized Method of Moments with many moment conditions. ArXiv. 1–10.

    Google Scholar 

  • Traversy, G., & Chaput, J. P. (2015). Alcohol consumption and obesity: An update. Current Obesity Reports, 4(1), 122–130.

    Article  Google Scholar 

  • Varin, C. (2008). On composite marginal likelihoods. AStA Adv Stat Anal. 92:1–28.

    Google Scholar 

  • Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Stat Sin. 21(1):5–42.

    Google Scholar 

  • Vazquez Arreola, E., & Wilson, J. R. (2020). Partitioned MVM marginal model with Bayes estimates for correlated data and time-dependent covariates. submitted.

    Google Scholar 

  • Yin, G. (2009). Bayesian generalized method of moments. Bayesian Analysis, 4(2), 191–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, G., Ma, Y., Liang, F., & Yuan, Y. (2011). Stochastic generalized method of moments. Journal of Computational and Graphical Statistics, 20(3), 714–727.

    Article  MathSciNet  Google Scholar 

  • Zeger, S. L., & Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42(1), 121–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, J.R., Vazquez-Arreola, E., Chen, (.DG. (2020). Partitioned GMM for Correlated Data with Bayesian Intervals. In: Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-48904-5_6

Download citation

Publish with us

Policies and ethics