Skip to main content

Generalized Estimating Equation and Generalized Linear Mixed Models

  • Chapter
  • First Online:
Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates

Abstract

This chapter covers methods to model observations that are correlated. The modeling of correlated data requires an alternative to the joint likelihood to obtain the parameter estimates. One such method is based on modeling the marginal mean and another method is based on modeling the conditional mean. There are some fundamental differences between the two approaches to model correlated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agresti, A. (2013). Categorical data analysis (3rd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Blackwelder, W. C. (1998). Equivalence trials. In P. Armitage & T. Colton (Eds.), Encyclopedia of biostatistics. New York: Wiley.

    Google Scholar 

  • Dean, C. B., & Nielse, J. D. (2007). Generalized linear mixed models: A review and some extensions. Lifetime Data Analysis, 13, 497–512.

    Article  MathSciNet  Google Scholar 

  • Diggle, P. J., Liang, K.-Y., & Zeger, S. L. (1994). Analysis of longitudinal data. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Dobson, A. J., & Barnett, A. G. (2008). An introduction to generalized linear models (3rd ed.). Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Hedeker, D., & Gibbons, R. D. (1994). A random-effects ordinal regression model for multilevel analysis. Biometrics, 50(4), 933–944.

    Article  Google Scholar 

  • Hu, F., Goldberg, J., Hedeker, D., Flay, B., & Pentz, A. (1998). Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. American Journal of Epidemiology, 147(7), 694–703.

    Article  Google Scholar 

  • Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Fifth Berkeley Symposium on Mathematical Statistics and Probability.

    Google Scholar 

  • Larsen, K., Petersen, J. H., Budtz-Jorgensen, E., & Endahl, L. (2000). Interpreting parameters in the logistic regression model with random effects. Biometrics, 56(3), 909–914.

    Article  Google Scholar 

  • Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.

    Article  MathSciNet  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman and Hall.

    Book  Google Scholar 

  • McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions and percentages. Psychometrika, 12, 153–157.

    Article  Google Scholar 

  • Neuhaus, J. M., & Jewell, N. P. (1990). The effect of retrospective sampling on binary regression models for clustered data. Biometrics, 46(4), 977–990.

    Article  Google Scholar 

  • Neuhaus, J. M., Kalbfleisch, J. D., & Hauck, W. W. (1991). A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Review, 59(1), 25–35.

    Article  Google Scholar 

  • Schabenberger, O. (2005). Introducing the GLIMMIX procedure for generalized linear mixed models. In Proceedings of the Thirteenth Annual SAS® Users Group International Conference (pp. 196–230).

    Google Scholar 

  • Ten Have, T. R., Kunselman, A. R., & Tran, L. (1999). A comparison of mixed effects logistic regression models for binary response data with two nested levels of clustering. Statistics in Medicine, 18(8), 947–960.

    Article  Google Scholar 

  • White, H. (1980). Heteroskedasticity-consistent covariance matrix estimator and direct test for heteroskedasticity. Econometrica, 48(4), 817–838.

    Article  MathSciNet  Google Scholar 

  • Zeger, S. L. (1988). A regression model for time-series of counts. Biometrika, 75(4), 621–629.

    Article  MathSciNet  Google Scholar 

  • Zeger, S. L., Liang, K.-Y., & Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44(4), 1049–1060.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, J.R., Vazquez-Arreola, E., Chen, (.DG. (2020). Generalized Estimating Equation and Generalized Linear Mixed Models. In: Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-48904-5_2

Download citation

Publish with us

Policies and ethics