Skip to main content

Aging

  • Chapter
  • First Online:
Basic Exercise Physiology

Abstract

Senescence is a complex process involving many variables such as genetics, lifestyle factors, and chronic diseases, the interaction of which significantly influences the manner in which we age [ACSM Position Stand (Med Sci Sports Exerc 30:992–1008, 1998)]. Despite mounting evidence implicating sedentary behavior as a significant risk factor in chronic-disease morbidity and mortality among the elderly, there is a limited amount of information on the type and amount of activity needed to promote optimal health and function in older people [DiPietro (J Gerontol A Biol Sci Med Sci 56:13–22, 2001)]. The objective of the present review is to examine the role of exercise training as a primary tool to achieve optimal health and function among the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dasari V, Srivastava S, Khan S, et al. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology. 2018;19:33–45.

    CAS  PubMed  Google Scholar 

  2. Shephard RJ. Physical activity and aging. 2nd ed. London: Croom Helm; 1987.

    Google Scholar 

  3. Reddy S, Comai L. Lamin A, farnesylation and aging. Exp Cell Res. 2011. [Epub ahead of print].

    Google Scholar 

  4. Santos Lozano A, Santamarina A, Pareja Galeano H, et al. The genetics of exceptional longevity: insights from centenarians. Maturitas. 2016;90:49–57.

    PubMed  Google Scholar 

  5. Tiffon C. The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci. 2018;19(11).

    Google Scholar 

  6. Gault ML, Willems ME. Aging, functional capacity and eccentric exercise training. Aging Dis. 2013;4:351–63.

    PubMed  PubMed Central  Google Scholar 

  7. Avin KG, Coen PM, Huang W, et al. Skeletal muscle as a regulator of the longevity protein. Klotho Front Physiol. 2014;5:189.

    PubMed  Google Scholar 

  8. Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med. 2003;33:877–88.

    PubMed  Google Scholar 

  9. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994;344:793–5.

    CAS  PubMed  Google Scholar 

  10. Burkitt MJ. A critical overview of the chemistry of copper dependent low-density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch Biochem Biophys. 2001;394:117–35.

    CAS  PubMed  Google Scholar 

  11. Sebastiani P, Solovieff N, Puca A, et al. Genetic signatures of exceptional longevity in humans. Science. 2010;333(6041):404.

    Google Scholar 

  12. Thomas L, Levett K, Boyd A, et al. Changes in regional left atrial function with aging: evaluation by Doppler tissue imaging. Eur J Echocardiogr. 2003;4:92–100.

    CAS  PubMed  Google Scholar 

  13. Gregorich ZR, Peng Y, Cai W, et al. Top-down targeted proteomics reveals decrease in myosin regulatory light-chain phosphorylation that contributes to sarcopenic muscle dysfunction. J Proteome Res. 2016;15:2706–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baumann CW, Kwak D, Liu HM, et al. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol (1985). 2016;121:1047–52.

    CAS  PubMed Central  Google Scholar 

  15. Matelot D, Schnell F, Kervio G, et al. Cardiovascular benefits of endurance training in seniors: 40 is not too late to start. Int J Sports Med. 2016;37:625–32.

    CAS  PubMed  Google Scholar 

  16. McEniery CM, Wilkinson IB, Avolio AP. Age, hypertension and arterial function. Clin Exp Pharmacol Physiol. 2007;34:665–71.

    CAS  PubMed  Google Scholar 

  17. Seals DR, Desouza CA, Donato AJ, et al. Habitual exercise and arterial aging. Appl Phys. 2008;105:1323–32.

    Google Scholar 

  18. Pang MYC, Yang FZH, Jones AYM. Vascular elasticity and grip strength Are associated with bone health of the hemiparetic radius in people with chronic stroke: implications for rehabilitation. Physic Ther. 2013;93:774–85.

    Google Scholar 

  19. Sethi S, Rivera O, Oliveros R, et al. Aortic stiffness: pathophysiology, clinical implications, and approach to treatment. Integr Blood Press Control. 2014;23(7):29–34.

    Google Scholar 

  20. Afilalo J, Karunananthan S, Eisenberg MJ, et al. Role of frailty in patients with cardiovascular disease. Am J Cardiol. 2009;103:1616–21.

    PubMed  Google Scholar 

  21. Chien MY, Kuo HK, Wu YT. Sarcopenia, cardiopulmonary fitness, and physical disability in community-dwelling elderly people. Phys Ther. 2010;90:1277–87.

    PubMed  Google Scholar 

  22. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

    PubMed  Google Scholar 

  23. Fleg JL, Strait J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev. 2011. [Epub ahead of print].

    Google Scholar 

  24. Nichols WW, O’Rourke MF. MacDonald’s blood flow in arteries. 4th ed. London: Arnold, Hodder Headline Group; 1998.

    Google Scholar 

  25. Laurent S, Katsahian S, Fassot C, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6.

    PubMed  Google Scholar 

  26. Avolio AP, Chen SG, Wang RP, et al. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68:50–8.

    CAS  PubMed  Google Scholar 

  27. Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18:127–32.

    CAS  PubMed  Google Scholar 

  28. Lorell BH, Carabello BA. Left ventricular hypertrophy pathogenesis, detection, and prognosis. Circulation. 2000;102:470–9.

    CAS  PubMed  Google Scholar 

  29. Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88:1456–62.

    CAS  PubMed  Google Scholar 

  30. Franklin SS, Gustin W IV, Wong ND, et al. Hemodynamic patterns of age-related changes in blood pressure. Circulation. 1997;96:308–15.

    CAS  PubMed  Google Scholar 

  31. Mitchell GF, Lacourciere Y, Ouellet JP, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    PubMed  Google Scholar 

  32. Kelly R, Hayward C, Avolio A, et al. Noninvasive determination of age-related changes in the human arterial pulse. Circulation. 1989;80:1652–9.

    CAS  PubMed  Google Scholar 

  33. O’Rourke M. Arterial haemodynamics and ventricular-vascular interaction in hypertension. Blood Press. 1994;3:33–7.

    PubMed  Google Scholar 

  34. Mattace-Raso FU, van der Cammen TJ, Hofman A, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    PubMed  Google Scholar 

  35. Laurent S, Kingwell B, Bank A, et al. Clinical applications of arterial stiffness: therapeutics and pharmacology. Am J Hypertens. 2002;5:453–8.

    Google Scholar 

  36. Cameron JD, Rajkumar C, Kingwell BA, et al. Higher systemic arterial compliance is associated with greater exercise time and lower blood pressure in a young older population. J Am Geriatr Soc. 1999;47:653–6.

    CAS  PubMed  Google Scholar 

  37. Martin WH III, Ogawa T, Kohrt WM, et al. Effects of aging, gender, and physical training on peripheral vascular function. Circulation. 1991;84:654–64.

    PubMed  Google Scholar 

  38. Rush JW, Aultman CD. Vascular biology of angiotensin and the impact of physical activity. Appl Physiol Nutr Metab. 2008;33:162–72.

    CAS  PubMed  Google Scholar 

  39. Coates D. The angiotensin converting enzyme. Int J Biochem Cell Biol. 2003;35:769–73.

    CAS  PubMed  Google Scholar 

  40. Gordon NF, Scott CB, Wilkinson WJ, et al. Exercise and mild essential hypertension. Recomm Adults Sports Med. 2001;10:390–404.

    Google Scholar 

  41. Guyton AC, Hall JE, editors. Textbook of medical physiology. 9th ed. Philadelphia, PA: WB Saunders; 2000. p. 227–30.

    Google Scholar 

  42. Benetos A, Gautier S, Ricard S, et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation. 1996;94:698–703.

    CAS  PubMed  Google Scholar 

  43. Avila-Vanzzini N, Espínola-Zavaleta N, Masso-Rojas F, et al. ACE gene polymorphism correlation (I/D) with the ventricular function in patients with ischemic and idiopathic dilated cardiomyopathy. (Article in Spanish). Rev Investig Clin. 2006;58:39–46.

    CAS  Google Scholar 

  44. Puthucheary Z, Skipworth JR, Rawal J, et al. The ACE gene and human performance: 12 years on. Sports Med. 2011;41:433–48.

    PubMed  Google Scholar 

  45. Van Geel PP, Pinto YM, Voors AA, et al. Angiotensin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension. 2000;35:717–21.

    PubMed  Google Scholar 

  46. Tanriverdi H, Evrengul H, Kaftan A, et al. Effects of angiotensin-converting enzyme polymorphism on aortic elastic parameters in athletes. Cardiology. 2005;104:113–9.

    CAS  PubMed  Google Scholar 

  47. Sagiv M, Amir O, Goldhammer E, et al. Left ventricular contractility in response to upright isometric exercise in heart transplant recipients and healthy men. J Cardiopulm Rehabil Prev. 2008;28:17–23.

    PubMed  Google Scholar 

  48. Camell CD, Sander J, Spadaro O, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature. 2017;550(7674):119–23. https://doi.org/10.1038/nature24022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8:143–64.

    PubMed  PubMed Central  Google Scholar 

  50. Saghiv M, Ben-Sira D, Goldhammer E, et al. What maintains the metabolic cost at peak anaerobic test in elite young and master male cyclists? Exerc Health Dis. 2018;2:1–4.

    Google Scholar 

  51. Reaburn P, Dascombe B. Endurance performance in masters athletes. Eur Rev Aging Phys Act. 2008;5:31–42.

    Google Scholar 

  52. Bortz WM. Disuse and aging. JAMA. 1982;248:1203–8.

    PubMed  Google Scholar 

  53. Swine C. Aging of heart function in man. (French). Presse Med. 1992;21:1216–21.

    CAS  PubMed  Google Scholar 

  54. Sagiv M, Ben-Sira D, Goldhammer E, et al. Left ventricular contractility and function at peak aerobic and anaerobic exercises. Med Sci Sports Exerc. 2000;32:1197–201.

    CAS  PubMed  Google Scholar 

  55. Correia LC, Lakatta EG, O’Connor FC, et al. Attenuated cardiovascular reserve during prolonged submaximal cycle exercise in healthy older subjects. J Am Coll Cardiol. 2002;40:1290–7.

    PubMed  Google Scholar 

  56. Tanaka H, Seals DR. Endurance exercise performance in masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol. 2008;586:55–63.

    CAS  PubMed  Google Scholar 

  57. Iemitsu M, Miyauchi T, Maeda S, et al. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am J Physiol Heart Circ Physiol. 2004;286:H1696–705.

    CAS  PubMed  Google Scholar 

  58. Fukuoka Y, Nakagawa Y, Ogoh K, et al. Dynamics of the heart rate response to sinusoidal work in humans: influence of physical activity and age. Clin Sci (Lond). 2002;102:31–8.

    Google Scholar 

  59. Shephard RJ. Health and aerobic fitness. Champaign, IL: Human Kinetics Publishers; 1993.

    Google Scholar 

  60. Capasso JM, Puntillo E, Olivetti G, et al. Difference in load dependence of relaxation between the left and right ventricular myocardium as a function of age in rats. Circ Res. 1989;65:1499–507.

    CAS  PubMed  Google Scholar 

  61. Izzo C, Carrizzo A, Alfano A, et al. The impact of aging on cardio and cerebrovascular diseases. Int J Mol Sci. 2018;19(2). pii:E481. https://doi.org/10.3390/ijms19020481.

  62. Cruickshank JM. The role of beta-blockers in the treatment of hypertension. Adv Exp Med Biol. 2017;956:149–66.

    PubMed  Google Scholar 

  63. Sagiv N, Sagiv M, Ben-Sira D. Weight lifting training and left ventricular function in adolescent subjects. J Sports Med Phys Fitness. 2007;47:329–34.

    CAS  PubMed  Google Scholar 

  64. de Oliveira SN, Pereira Moro AR, et al. Effects of concurrent training with elastic tubes in hypertensive patients: a blind controlled randomized clinical trial. Exp Aging Res. 2019:1–15. https://doi.org/10.1080/0361073X.2019.1693030.

  65. Peterson LR, Morton RR, Schechtman KB, et al. Peak exercise stroke volume: associations with cardiac structure and diastolic function. J Appl Physiol. 2003;94:1108–14.

    PubMed  Google Scholar 

  66. Biering-Sorensen T. Cardiac time intervals by tissue Doppler imaging M-mode echocardiography: reproducibility, reference values, association with clinical characteristics and prognostic implications. Dan Med J. 2016;63(8). pii: B5279.

    Google Scholar 

  67. Sagiv M, Goldhammer E, Ben-Sira D. Effect of increased after-load on left ventricular filling properties in healthy elderly and young subjects. Med Exerc Nutr Health. 1992;1:48–53.

    Google Scholar 

  68. Dugan SA, Gabriel KP, Lange-Maia BS, et al. Physical activity and physical function: moving and aging. Obstet Gynecol Clin N Am. 2018;45:723–36.

    Google Scholar 

  69. Ketata W, Rekik WK, Ayadi H, et al. Aging of the respiratory system: anatomical changes and physiological consequences. [Article in French]. Rev Pneumol Clin. 2012;68(5):282–9. https://doi.org/10.1016/j.pneumo.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  70. Guenette JA, Witt JD, McKenzie DC, et al. Respiratory mechanics during exercise in endurance-trained men and women. J Physiol. 2007;581:1309–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dufour Doiron M, Prud’homme D, et al. Time-of-day variation in cardiovascular response to maximal exercise testing in coronary heart disease patients taking a beta-blocker. Appl Physiol Nutr Metab. 2007;32:664–9.

    PubMed  Google Scholar 

  72. McClaran SR, Babcock MA, Pegelow DF, et al. Longitudinal effects of aging on lung function at rest and exercise in healthy active fit elderly adults. J Appl Physiol. 1995;78:1957–68.

    CAS  PubMed  Google Scholar 

  73. Johnson BD, Badr MS, Dempsey JA. Impact of the aging pulmonary system on the response to exercise. Clin Chest Med. 1994;15:229–46.

    CAS  PubMed  Google Scholar 

  74. Taylor BJ, Johnson BD. The pulmonary circulation and exercise responses in the elderly. Semin Respir Crit Care Med. 2010;31:528–38.

    PubMed  PubMed Central  Google Scholar 

  75. Eynon N, Yamin C, Ben-Sira D, et al. Optimal health and function among the elderly: lessening severity of ADL disability. Eur Rev Aging Phys Act. 2009;6:5–6.

    Google Scholar 

  76. Porter C, Hurren NM, Cotter MV, et al. Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Am J Physiol Endocirnol Metab. 2015;309:E224–32.

    CAS  Google Scholar 

  77. Dash RK, Dibella JA II, Cabrera ME. A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise. Biomed Eng Online. 2007;20:14–42.

    Google Scholar 

  78. Kimyagarov S, Levenkron S, Shabi A, et al. Changes of skeletal muscle mass among disabled elderly. (Article in Hebrew). Harefuah. 2010;149:67–70.

    PubMed  Google Scholar 

  79. Papa EV, Dong X, Hassan M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin Interv Aging. 2017;12:955–61.

    PubMed  PubMed Central  Google Scholar 

  80. Chistiakov DA, Sobenin IA, Revin VV, et al. Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Res Int. 2014; https://doi.org/10.1155/2014/238463.

  81. Reiter RJ, Tan DX, Rosales-Corral S, et al. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules. 2018;23(2). pii: E509. https://doi.org/10.3390/molecules23020509.

  82. Braganza A, Corey CG, Santanasto AJ, et al. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight. 2019;5. pii: 128248. https://doi.org/10.1172/jci.insight.128248.

  83. Zhang R, Wang Y, Ye K, et al. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017;18(1):890. https://doi.org/10.1186/s12864-017-4287-0.

    Article  CAS  Google Scholar 

  84. Marini M, Sarchielli E, Brogi L, et al. Role of adapted physical activity to prevent the adverse effects of the sarcopenia. A pilot study. Ital J Anat Embryol. 2008;113:217–25.

    PubMed  Google Scholar 

  85. Fleg JL, Morrell CH, Bos AG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112:674–82.

    PubMed  Google Scholar 

  86. Ishida K, Katayama K, Akima H, et al. Effects of deconditioning on the initial ventilatory and circulatory responses at the onset of exercise in man. Adv Exp Med Biol. 2010;669:319–22.

    CAS  PubMed  Google Scholar 

  87. Rossiter HB, Kowalchuk JM, Whipp BJ. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol. 2006;100:764–70.

    CAS  PubMed  Google Scholar 

  88. Lakatta EG. Changes in cardiovascular function with aging. Eur Heart J. 1990;Suppl C:22–9.

    Google Scholar 

  89. Huang YC, O’Brien SR, MacIntyre NR. Intrabreath diffusing capacity of the lung in healthy individuals at rest and during exercise. Chest. 2002;122:177–85.

    PubMed  Google Scholar 

  90. Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at aximum exercise in pulmonary hypertension. Med Sci Sports Exec. 2008;40:3–8.

    CAS  Google Scholar 

  91. Wilmore JH, Costill DL. Physiology of sport and exercise: rate of reaction. 3rd ed. Champaign, IL: Human Kinetics; 2005.

    Google Scholar 

  92. Faulkner JA, Larkin LM, Claflin DR, et al. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34:1091–6.

    CAS  PubMed  Google Scholar 

  93. Trappe S. Marathon runners: how do they age? Sports Med. 2007;37:302–5.

    PubMed  Google Scholar 

  94. Pollock ML, Mengelkoch LJ, Graves JE, et al. Twenty-year follow-up of aerobic power and body composition of older track athletes. J Appl Physiol. 1997;82:1508–16.

    CAS  PubMed  Google Scholar 

  95. Koster A, Ding J, Stenholm S, et al. Health ABC study. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci. 2011;66:888–95.

    PubMed  Google Scholar 

  96. Wroblewski AP, Amati F, Smiley MA, et al. Chronic exercise preserves lean muscle mass in masters athletes. Phys Sports Med. 2011;39:172–8.

    Google Scholar 

  97. Knechtle B, Knechtle P, Rosemann T. Upper body skinfold thickness is related to race performance in male Ironman triathletes. Int J Sports Med. 2011;32:20–7.

    CAS  PubMed  Google Scholar 

  98. Knechtle B, Rust CA, Knechtle P, et al. Does muscle mass affect running times in male long-distance master runners? Asian J Sports Med. 2012;3:247–56.

    PubMed  PubMed Central  Google Scholar 

  99. Lepers R, Cattagni T. Do older athletes reach limits in their performance during marathon running? Age (Dordr). 2012;34:773–81.

    Google Scholar 

  100. American College of Sports Medicine Position Stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59.

    Google Scholar 

  101. Farinatti P, Monteiro W, Oliveira R, et al. Cardiorespiratory responses and myocardial function within incremental exercise in healthy unmedicated older vs. young men and women. Aging Clin Exp Res. 2018;30:341–9.

    PubMed  Google Scholar 

  102. Montero D, Díaz-Canestro C. Endurance training and maximal oxygen consumption with ageing: role of maximal cardiac output and oxygen extraction. Eur J Prev Cardiol. 2016;23:733–43.

    PubMed  Google Scholar 

  103. Fletcher GF, Balady G, Blair SN, et al. Statement on exercise: benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation. 1996;94:857–62.

    CAS  PubMed  Google Scholar 

  104. Hackam DG, Khan NA, Hemmelgarn BR, et al. The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2 – therapy. Can J Cardiol. 2010;26:249–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wiles JD, Taylor K, Coleman D, et al. The safety of isometric exercise: rethinking the exercise prescription paradigm for those with stage 1 hypertension. Medicine (Baltimore). 2018;97(10):e0105. https://doi.org/10.1097/MD.0000000000010105.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Oliveira A, Monteiro A, Jacome C, et al. Effects of group sports on health-related physical fitness of overweight youth: a systematic review and meta-analysis. Scand J Med Sci Sports. 2017;27(6):604–11. https://doi.org/10.1111/sms.12784.

    Article  PubMed  Google Scholar 

  107. Ray CA, Carrasco DI. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2000;279:H245–9.

    CAS  PubMed  Google Scholar 

  108. Katayama K, Saito M. Muscle sympathetic nerve activity during exercise. J Physiol Sci. 2019;69:589–98.

    PubMed  Google Scholar 

  109. Blagosklonny MV, Campisi J, Sinclair DA, et al. Impact papers on aging in 2009. Aging (Albany, NY). 2010;2:111–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wilson VL, Smith RA, Ma S, et al. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262:9948–51.

    CAS  PubMed  Google Scholar 

  111. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6:21652178.

    Google Scholar 

  112. Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci. 2012;109:10522–7.

    CAS  PubMed  Google Scholar 

  113. Zhang FF, Cardarelli R, Carroll J, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6:293–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ronn T, Volkov P, Davegardh C, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572.

    PubMed  PubMed Central  Google Scholar 

  115. O’Donovan A, Lin J, Dhabhar FS, et al. Pessimism correlates with leukocyte telomere shortness and elevated interleukin-6 in post-menopausal women. Brain Behav Immun. 2009;23:446–9.

    PubMed  Google Scholar 

  116. Welle S, Brooks AI, Delehanty JM, et al. Gene expression profile of aging in human muscle. Physiol Genomics. 2003;14:149–59.

    CAS  PubMed  Google Scholar 

  117. Morissette MP, Susser SE, Stammers AN, et al. Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium ATPase isoforms induced by exercise training. J Appl Physiol (1985). 2014;117:544–55.

    CAS  PubMed Central  Google Scholar 

  118. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338:1435–9.

    CAS  PubMed  Google Scholar 

  119. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    CAS  PubMed  Google Scholar 

  120. Pandorf CE, Haddad F, Owerkowicz T, et al. The presence and regulation of antisense long non-coding RNA with altered myosin expression in exercising human muscle. (Abstract). FASEB J. 2012;26:1086.

    Google Scholar 

  121. Drummond MJ, McCarthy JJ, Sinha M, et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics. 2010;43:595–603.

    PubMed  PubMed Central  Google Scholar 

  122. Ntanasis-Stathopoulos J, Tzanninis JG, et al. Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact. 2013;13:133–46.

    CAS  PubMed  Google Scholar 

  123. Radom-Aizik S, Zaldivar F Jr, Oliver S, et al. Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol. 2010;109:252–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wilson D, Jackson T, Sapey E, et al. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10.

    PubMed  Google Scholar 

  125. Janssen I, Heymsfield SB, Wang ZM, et al. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89:81–8.

    CAS  PubMed  Google Scholar 

  126. Wee AS. Carpal tunnel syndrome: comparison of the compound muscle action potentials recorded at the thenar region from ulnar and median nerve stimulation. Electromyogr Clin Neurophysiol. 2006;46:123–6.

    CAS  PubMed  Google Scholar 

  127. Peterson SJ, Mozer M. Differentiating sarcopenia and cachexia among patients with cancer. Nutr Clin Pract. 2017;32:30–9.

    PubMed  Google Scholar 

  128. Oliveira LF, Verneque D, Menegaldo LL. The influence of aging on the isometric torque sharing patterns among the plantar flexor muscles. Acta Bioeng Biomech. 2017;19:41–5.

    PubMed  Google Scholar 

  129. Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. 2008;9:213–28.

    CAS  PubMed  Google Scholar 

  130. Shibuya K. Cortical motor nuron hyperexcitability and motor neuron death in ALS: dying forward hypothesis. (Article in Japanese). Brain Nerve. 2017;69:565–9.

    PubMed  Google Scholar 

  131. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol. 2003;95:1717–27.

    CAS  PubMed  Google Scholar 

  132. Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull. 2010;95:139–59.

    CAS  PubMed  Google Scholar 

  133. Marcell TJ. Sarcopenia: causes, consequences, and preventions. J Gerontol Series A, Biol Sci Med Sci. 2003;58:M911–6.

    Google Scholar 

  134. Sayer AA. Sarcopenia the new geriatric giant: time to translate research findings into clinical practice. Age Ageing. 2014;43:736–7.

    PubMed  Google Scholar 

  135. Abate M, Di Iorio A, Di Renzo D, et al. Frailty in the elderly: the physical dimension. Eur Medicophys. 2007;43:407–15.

    CAS  Google Scholar 

  136. Yarasheski KE. Exercise, aging, and muscle protein metabolism. J Gerontol Series A, Biol Sci Med Sci. 2003;58:M918–22.

    Google Scholar 

  137. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Datab Sys Rev. CD002759. https://doi.org/10.1002/14651858.cd002759.

  138. Kim KM, Lim S, Oh TJ, et al. Longitudinal changes in muscle mass and strength, and bone mass in older adults: gender-specific associations between muscle loss. Gerontol A Biol Sci Med Sci. 2018;73:1062–9.

    CAS  Google Scholar 

  139. Chen L, Nelson DR, Zhao Y, et al. Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. BMC Geriatr. 2013;13:74. https://doi.org/10.1186/1471-2318-13-74.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dey DK, Bosaeus I, Lissner L, et al. Changes in body composition and its relation to muscle strength in 75-year-old men and women: a 5-year prospective follow-up study of the NORA cohort in Göteborg, Sweden. Nutrition. 2009;25:613–9.

    PubMed  Google Scholar 

  141. Sherrington C, Fairhall NJ, Wallbank GK, et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;1:CD012424. https://doi.org/10.1002/14651858.CD012424.pub2.

    Article  PubMed  Google Scholar 

  142. Baldwin KM, Haddad F. Research in the exercise sciences: where we are and where do we go from here–Part II. Exerc Sport Sci Rev. 2010;38:42–50.

    PubMed  PubMed Central  Google Scholar 

  143. Naichun J, Luan J, Hu F, Rubinek T, Modan Moses D. Klotho and the growth hormone/insulin-like growth factor 1 axis: novel insights into complex interactions. Vitam Horm. 2016;101:85–118.

    Google Scholar 

  144. Matsakas A, Narkar VA. Endurance exercise mimetics in skeletal muscle. Curr Sports Med Rep. 2010;9:227–32.

    PubMed  Google Scholar 

  145. Matos N, Winsley RJ. Trainability of young athletes and overtraining. J Sports Sci Med. 2007;6:353–67.

    PubMed  PubMed Central  Google Scholar 

  146. Echigoya Y, Morita S, Itou T, et al. Effects of extracellular lactate on production of reactive oxygen species by equine polymorphonuclear leukocytes in vitro. Am J Vet Res. 2012;73:1290–8.

    CAS  PubMed  Google Scholar 

  147. Suwa M, Nakano H, Kumagai S. Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol. 2003;95:960–8.

    CAS  PubMed  Google Scholar 

  148. Mishra S, Chattopadhyay A, Naaz S, et al. Oleic acid ameliorates adrenaline induced dysfunction of rat heart mitochondria by binding with adrenaline: an isothermal titration calorimetry study. Life Sci. 2018;218:96–111.

    PubMed  Google Scholar 

  149. McBride JM, Kraemer WJ. Free radicals, exercise, and antioxidants. J Strength Cond Res. 1999;13:175–83.

    Google Scholar 

  150. Park SY, Kwak YS. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J Exerc Rehabil. 2016;12:113–7.

    PubMed  PubMed Central  Google Scholar 

  151. Saghiv M, Goldhammer E, Sagiv M, Ben Sira D. Klotho gene expression responses to long lasting aerobic training and aging. J Gerontol. 2015;1(2):009.

    Google Scholar 

  152. Betik AC, Hepple RT. Determinants of VO2 max decline with aging: an integrated perspective. Appl Physiol Nutr Metab. 2008;33:130–40.

    PubMed  Google Scholar 

  153. Li Y, Niessen M, Chen X, et al. Overestimate of relative aerobic contribution with maximal accumulated oxygen deficit: a review. J Sports Med Phys Fitness. 2015;55:377–82.

    CAS  PubMed  Google Scholar 

  154. Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Phys Cell Phys. 2007;292:C670–86.

    CAS  Google Scholar 

  155. Wei YH, Wu SB, Ma YS, et al. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J. 2009;32:113–32.

    PubMed  Google Scholar 

  156. Ticinesi A, Meschi T, Narici MV, et al. Muscle ultrasound and sarcopenia in older individuals: a clinical perspective. J Am Med Dir Assoc. 2017;18:290–300.

    PubMed  Google Scholar 

  157. Lovering RM, Brooks SV. Eccentric exercise in aging and diseased skeletal muscle: good or bad? J Appl Physiol (1985). 2014;116:1439–45.

    Google Scholar 

  158. Hernandez Morante JJ, Gomez Martínez C, Morillas-Ruiz JM. Dietary factors associated with frailty in old adults: a review of nutritional interventions to prevent frailty development. Nutrients. 2019;11(1). pii: E102. https://doi.org/10.3390/nu11010102.

  159. Sagiv M, Sagiv A, Ben-Sira D, et al. Effects of chronic overload training and aging on left ventricular systolic function. Gerontology. 1997;43:307–15.

    CAS  PubMed  Google Scholar 

  160. Monteiro AG, Alveno DA, Prado M, et al. Acute physiological responses to different circuit training protocols. J Sports Med Phys Fitness. 2008;48:438–42.

    CAS  PubMed  Google Scholar 

  161. Karlsdottir AE, Foster C, Porcari JP, et al. Hemodynamic responses during aerobic and resistance exercise. J Cardpulm Rehabil. 2002;22:170–7.

    Google Scholar 

  162. Lichtenberg T, von Stengel S, Sieber C, et al. The favorable effects of a high-intensity resistance training on sarcopenia in older community-dwelling men with osteosarcopenia: the randomized controlled FrOST study. Clin Interv Aging. 2019;14:2173–86. https://doi.org/10.2147/CIA.S225618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sagiv M. Safety of resistance training in the elderly. Eur Rev Aging Phys Act. 2009;6:1–2.

    Google Scholar 

  164. Naichun J, Luan J, Hu F, et al. Aerobic exercise-stimulated Klotho upregulation extends life span by attenuating the excess production of reactive oxygen species in the brain and kidney. Exp Ther Med. 2018;16:3511–7.

    Google Scholar 

  165. Rubinek T, Modan Moses D. Klotho and the growth hormone/insulin-like growth factor 1 axis: novel insights into complex interactions. Vitam Horm. 2016;101:85–118.

    CAS  PubMed  Google Scholar 

  166. Zuo Z, Lei H, Wang X, et al. Aging-related kidney damage is associated with a decrease in klotho expression and an increase in superoxide production. Age (Dordr). 2011;33:261–74.

    CAS  PubMed  Google Scholar 

  167. Wang Y, Sun Z. Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats. J Hypertens. 2014;32:16291636.

    Google Scholar 

  168. Kuro OM. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008;389:233–41.

    Google Scholar 

  169. Xiao NM, Zhang YM, Zheng Q, et al. Klotho is a serum factor related to human aging. Chin Med J (Engl). 2004;117:742–7.

    CAS  PubMed  Google Scholar 

  170. Guo Y, Zhuang X, Huang Z, et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NFκB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol basis Dis. 1864;2018:238–51.

    Google Scholar 

  171. Huang CL. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 2010;77:855–60.

    PubMed  Google Scholar 

  172. Liu BC, Yang LL, Lu XY, et al. Lovastatin-induced phosphatidylinositol-4-phosphate 5-kinase diffusion from microvilli stimulates ROMK channels. J Am Soc Nephrol. 2015;26:1576–87.

    CAS  PubMed  Google Scholar 

  173. Mencke R, Hillebrands JL. NIGRAM consortium. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev. 2017;35:124–46.

    CAS  PubMed  Google Scholar 

  174. Sopjani M, Rinnerthaler M, Kruja J, et al. Intracellular signaling of the aging suppressor protein Klotho. Curr Mol Med. 2015;15:27–37.

    CAS  PubMed  Google Scholar 

  175. Semba RD, Cappola AR, Sun K, et al. Plasma Klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci. 2011;66:794–800.

    PubMed  Google Scholar 

  176. Tornbom K, Sunnerhagen KS, Danielsson A. Perceptions of physical activity and walking in an early stage after stroke or acquired brain injury. PLoS One. 2017;12(3):e0173463. https://doi.org/10.1371/journal.pone.0173463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Park Y, Choi JE, Hwang HS. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2018;108:1026–33.

    PubMed  Google Scholar 

  178. Tavoian D, Russ DW, Law TD, et al. A randomized clinical trial comparing three different exercise strategies for optimizing aerobic capacity and skeletal muscle performance in older adults: protocol for the DART study. Front Med (Lausanne). 2019;6:236. https://doi.org/10.3389/fmed.2019.00236.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghiv, M.S., Sagiv, M.S. (2020). Aging. In: Basic Exercise Physiology. Springer, Cham. https://doi.org/10.1007/978-3-030-48806-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48806-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48805-5

  • Online ISBN: 978-3-030-48806-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics