Skip to main content

Exercise in Hostile Environment

  • Chapter
  • First Online:
  • 1555 Accesses

Abstract

Height climbers at high altitude, athletes performing above sea level, divers for recreation or military assignments, and astronauts acting in microgravity surrounding all are obligated to complete different missions in hostile environments. Studies investigating the effects of cold, at high altitude, water pressures while diving, and microgravity surrounding on body systems function indicate that they are often stalled by insignificant stressors such as isolation in the cold, depth when diving, and radiation in space (Walsh and Whitham, Sports Med, 36:941–76; 2006). Yet, the existing indications do not sustain the acceptance that as an example, cold exposure and exercise cause discomfort at high altitude. This chapter deals with all three hostile environments that humans are involved with.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Park H-Y, Hwang H, Park J-H, et al. The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes – a meta-analysis. J Exerc Nutr Biochem. 2016;20:15–22.

    Google Scholar 

  2. McLean BD, Gore CJ, Kemp J. Application of ‘live low-train high’ for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014;44:1275–87.

    PubMed  Google Scholar 

  3. Bailey DM, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997;31:183–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zebrowska A, Jastrzębski D, Sadowska-Krępa E, et al. Comparison of the effectiveness of high-intensity interval training in hypoxia and normoxia in healthy male volunteers: a pilot study. Biomed Res Int. 2019;2019:7315714. https://doi.org/10.1155/2019/7315714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brocherie F, Millet GP, D’Hulst G, et al. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol (Oxf). 2018;222(1):e12851. https://doi.org/10.1111/apha.12851.

    Article  CAS  Google Scholar 

  6. Rizo-Roca D, Bonet JB, Inal B, et al. Contractile activity is necessary to trigger intermittent hypobaric hypoxia-induced fiber size and vascular adaptations in skeletal muscle. Front Physiol. 2018;9:481. https://doi.org/10.3389/fphys.2018.00481.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferretti G. Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli’s contribution to the study of altitude physiology. Eur J Appl Physiol. 2003;90:344–50.

    CAS  PubMed  Google Scholar 

  8. Howald H, Hoppeler H. Performing at extreme altitude: muscle cellular and subcellular adaptations. Eur J Appl Physiol. 2003;90:360–4.

    PubMed  Google Scholar 

  9. Murray AJ. Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med. 2009;1(12):117. https://doi.org/10.1186/gm117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000;59:47–53.

    CAS  PubMed  Google Scholar 

  11. Lizamore CA, Hamlin MJ. The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. High Alt Med Biol. 2017;18:305–21.

    PubMed  Google Scholar 

  12. Hauser A, Troesch S, Steiner T, et al. Do male athletes with already high initial haemoglobin mass benefit from ‘live high-train low’ altitude training? Exp Physiol. 2018;103:68–76.

    CAS  PubMed  Google Scholar 

  13. Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant. 2014;29:497–506.

    CAS  PubMed  Google Scholar 

  14. Ramirez G, Hammond M, Agosti SJ, et al. Effects of hypoxemia at sea level and high altitude on sodium excretion and hormonal levels. Aviat Space Environ Med. 1992;63:891–8.

    CAS  PubMed  Google Scholar 

  15. Hildebrandt W, Ottenbacher A, Schuster M, et al. Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O2 chemosensitivity. J Appl Physiol. 2000;88:599–610.

    CAS  PubMed  Google Scholar 

  16. Steinback CD, Poulin MJ. Cardiovascular and cerebrovascular responses to acute isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol (1985). 2008;104:482–9.

    Google Scholar 

  17. Naeye RL. Children at high altitude: pulmonary and renal abnormalities. Circ Res. 1965;16:33–8.

    CAS  PubMed  Google Scholar 

  18. Bestle MH, Olsen NV, Poulsen TD, et al. Prolonged hypobaric hypoxemia attenuates vasopressin secretion and renal response to osmo-stimulation in men. J Appl Physiol. 2002;92:1911–22.

    CAS  PubMed  Google Scholar 

  19. Olsen NV, Kanstrup IL, Richalet JP, et al. Effects of acute hypoxia on renal and endocrine function at rest and during graded exercise in hydrated subjects. J Appl Physiol. 1992;73:2036–43.

    CAS  PubMed  Google Scholar 

  20. Pichler J, Risch L, Hefti U, et al. Glomerular filtration rate estimates decrease during high altitude expedition but increase with Lake Louise acute mountain sickness scores. Acta Physiol (Oxf). 2008;192:443–50.

    CAS  Google Scholar 

  21. Singh MV, Salhan AK, Rawal SB, et al. Blood gases, hematology, and renal blood flow during prolonged mountain sojourns at 3500 and 5800 m. Aviat Space Environ Med. 2003;74:533–6.

    CAS  PubMed  Google Scholar 

  22. Schneider M, Bernasch D, Weymann J, et al. Acute mountain sickness: influence of susceptibility, preexposure and ascent rate. Med Sci Sports Exerc. 2002;34:1886–91.

    PubMed  Google Scholar 

  23. Navot Mintzer D, Leshem E, Chazan B, et al. High altitude exposure in travelers with preexisting medical condition. [article in Hebrew]. Harefuah. 2015;154:725–9.

    PubMed  Google Scholar 

  24. Taylor AT. High-altitude illnesses: physiology, risk factors, prevention, and treatment. Rambam Maimonides Med J. 2011;2(1):e0022. https://doi.org/10.5041/RMMJ.10022.

    Article  PubMed  PubMed Central  Google Scholar 

  25. West JB, Schoene RB, Milledge JS. High altitude medicine and physiology. 4th ed. Hodder Arnold: London, Great Britain; 2007.

    Google Scholar 

  26. Khodaee M, Grothe HL, Seyfert JH, et al. Athletes at high altitude. Sports Health. 2016;8:126–32.

    PubMed  PubMed Central  Google Scholar 

  27. Sutton JR, Coates G, Houston CS. Hypoxia and mountain medicine. Vt. Queen City Printers: Burlington; 1992.

    Google Scholar 

  28. Basnyat B, Murdoch DR. High-altitude illness. Lancet. 2003;361:1967–74.

    PubMed  Google Scholar 

  29. Wu T, Ding S, Liu J, et al. Ataxia: an early indicator in high altitude cerebral edema. High Alt Med Biol. 2006;7:275–80.

    PubMed  Google Scholar 

  30. Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345:107–14.

    CAS  PubMed  Google Scholar 

  31. Luks AM. Do we have a “best practice” for treating high altitude pulmonary edema? High Alt Med Biol. 2008;9:111–4.

    PubMed  Google Scholar 

  32. Kashirina DN, Percy AJ, Pastushkova LK, et al. The molecular mechanisms driving physiological changes after long duration space flights revealed by quantitative analysis of human blood proteins. BMC Med Genet. 2019;12(Suppl 2):45. https://doi.org/10.1186/s12920-019-0490-y.

    Article  Google Scholar 

  33. Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol (1985). 1996;81:105–16.

    CAS  Google Scholar 

  34. Goswami N, Blaber AP, Hinghofer-Szalkay H, et al. Lower body negative pressure: physiological effects, applications, and implementation. Physiol Rev. 2019;99:807–51.

    CAS  PubMed  Google Scholar 

  35. Diedrich A, Paranjape SY, Robertson D. Plasma and blood volume in space. Am J e Med Sci. 2007;334:80–6.

    Google Scholar 

  36. Tomilovskaya E, Shigueva T, Sayenko D, et al. Dry immersion as a ground-based model of microgravity physiological effects. Front Physiol. 2019;10:284. https://doi.org/10.3389/fphys.2019.00284.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tyganov SA, Mochalova EP, Belova SP, et al. Effects of plantar mechanical stimulation on anabolic and catabolic signaling in rat postural muscle under short-term simulated gravitational unloading. Front Physiol. 2019;10:1252. https://doi.org/10.3389/fphys.2019.01252.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tischler ME, Henriksen EJ, Munoz KA, et al. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats. J Appl Physiol (1985). 1993;74:2161–5.

    CAS  Google Scholar 

  39. Hackney KJ, Scott JM, Hanson AM, et al. The astronaut-athlete: optimizing human performance in space. J Strength Cond Res. 2015;29:3531–45.

    PubMed  Google Scholar 

  40. Riley DA, Bain JL, Thompson JL, et al. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles. J Appl Physiol (1985). 2002;92:817–25.

    Google Scholar 

  41. Adams GR, Caiozzo VJ, Baldwin KM. Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol (1985). 2003;95:2185–201.

    Google Scholar 

  42. Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol. 2001;204:3201–8.

    CAS  PubMed  Google Scholar 

  43. Riley DA, Bain JL, Romatowski JG, et al. Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity. Am J Physiol Cell Physiol. 2005;288(2):C360–5.

    CAS  PubMed  Google Scholar 

  44. Zerath E. Effects of microgravity on bone and calcium homeostasis. Adv Space Res. 1998;21:1049–58.

    CAS  PubMed  Google Scholar 

  45. Thirsk R, Kuipers A, Mukai C, et al. The space-flight environment: the international Space Station and beyond. CMAJ. 2009;180:1216–20.

    PubMed  PubMed Central  Google Scholar 

  46. Grimm D, Grosse J, Wehland M, et al. The impact of microgravity on bone in humans. Bone. 2016;87:44–56.

    PubMed  Google Scholar 

  47. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    CAS  PubMed  Google Scholar 

  49. Rittweger J, Albracht K, Fluck M, et al. Sarcolab pilot study into skeletal muscle’s adaptation to long-term spaceflight. NPJ Microgravity. 2018;4:18. https://doi.org/10.1038/s41526-018-0052-1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Genc KO, Gopalakrishnan R, Kuklis MM, et al. Foot forces during exercise on the international Space Station. J Biomech. 2010;43:3020–7.

    CAS  PubMed  Google Scholar 

  51. Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

    PubMed  Google Scholar 

  52. He JP, Feng X, Wang JF, et al. Icariin prevents bone loss by inhibiting bone resorption and stabilizing bone biological apatite in a hindlimb suspension rodent model. Acta Pharmacol Sin. 2018;39:1760–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Convertino VA. Mechanisms of microgravity-induced orthostatic intolerance and implications of effective countermeasures: overview and future directions. J Gravit Physiol. 2002;9:1–12.

    PubMed  Google Scholar 

  54. Lee SMC, Feiveson AH, Stein S, et al. Orthostatic intolerance after ISS and space shuttle missions. Aerosp Med Hum Perform. 2015;86(suppl):A54–67.

    PubMed  Google Scholar 

  55. Fu Q, Shibata S, Hastings JL, et al. Impact of prolonged spaceflight on orthostatic tolerance during ambulation and blood pressure profiles in astronauts. Circulation. 2019;140:729–38.

    PubMed  Google Scholar 

  56. Sonnenfeld G. The immune system in space, including earth-based benefits of space-based research. Curr Pharm Biotechnol. 2005;6:343–9.

    CAS  PubMed  Google Scholar 

  57. Prisk GK. Microgravity and the respiratory system. Eur Respir J. 2014;43:1459–71.

    PubMed  Google Scholar 

  58. Verbanck S, Larsson H, Linnarsson D, et al. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity. J Appl Physiol (1985). 1997;83:810–6.

    CAS  Google Scholar 

  59. West JB, Elliott AR, Guy HJ, et al. Pulmonary function in space. JAMA. 1997;25(277):1957–61.

    Google Scholar 

  60. Demontis GC, Germani MM, Caiani EG, et al. Human pathophysiological adaptations to the space environment. Front Physiol. 2017;8:547. https://doi.org/10.3389/fphys.2017.00547.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol. 2013;113:2183–92. https://doi.org/10.1007/s00421-012-2523-2525.

    Article  PubMed  Google Scholar 

  62. Convertino VA. Exercise and adaptation to microgravity environments. In: Handbook of physiology; 1996. p. 815–43.

    Google Scholar 

  63. Vernikos J, Schneider VS. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology. 2010;56:157–66.

    PubMed  Google Scholar 

  64. Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985). 2016;120:891–903.

    Google Scholar 

  65. Marshall-Goebel K, Mulder E, Donoviel D, et al. An international collaboration studying the physiological and anatomical cerebral effects of carbon dioxide during head-down tilt bed rest: the SPACECOT study. J Appl Physiol (1985). 2017;122:1398–405.

    CAS  Google Scholar 

  66. Cardus D, McTaggart WG. Artificial gravity as a countermeasure of physiological deconditioning in space. Adv Space Res. 1994;14:409–14.

    CAS  PubMed  Google Scholar 

  67. Walsh NP, Whitham N. Exercising in environmental extremes. Sports Med. 2006;36:941–76.

    PubMed  Google Scholar 

  68. Elmann-Larsen B, Schmitt D. Staying in bed to benefit ESA’s astronauts and Europe’s citizens. ESA Bull. 2003;113:34–9.

    PubMed  Google Scholar 

  69. Jones TW, Petersen N, Howatson G. Optimization of exercise countermeasures for human space flight: operational considerations for concurrent strength and aerobic training. Front Physiol. 2019;10:584. https://doi.org/10.3389/fphys.2019.00584.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Convertino VA, Sandler H. Exercise countermeasures for spaceflight. Acta Astronaut. 1995;35:253–70. https://doi.org/10.1016/0094-5765(95)98731-N.

    Article  CAS  PubMed  Google Scholar 

  71. Steele J, Androulakis-Korakakis P, Perrin C, et al. Comparisons of resistance training and “cardio” exercise modalities as countermeasures to microgravity-induced physical deconditioning: new perspectives and lessons learned from terrestrial studies. Front Physiol. 2019;10:1150. https://doi.org/10.3389/fphys.2019.01150.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Convertino VA. Physiological adaptations to weightlessness: effects on exercise and work performance. Exerc Sports Sci Rev. 1990;18:119–65.

    CAS  Google Scholar 

  73. Rittweger J, Beller G, Armbrecht G, et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010;46:137–47.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghiv, M.S., Sagiv, M.S. (2020). Exercise in Hostile Environment. In: Basic Exercise Physiology. Springer, Cham. https://doi.org/10.1007/978-3-030-48806-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48806-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48805-5

  • Online ISBN: 978-3-030-48806-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics