Skip to main content

Introduction to Exercise Physiology

  • Chapter
  • First Online:
Basic Exercise Physiology

Abstract

Exercise physiology expresses the body’s functional capacity during and following exercise. Exercise physiology is a profession that supports medical and health professions. It defines the different body’s system adaptations to acute physical bouts and long-lasting exercise training. Following an exercise training program, functional changes of the muscular, cardiovascular, and neurohumoral systems improve body’s overall functional capacity. In addition, chronic exercise training increases cellular metabolic rate as an adaptive response. Exercise physiology helps to detect, by means of a physical exercise, health status and pathological state and use mechanisms by which exercise can reduce or reverse disease progression.

Participation in physical activity has many motives, such as supports growth, improves strength, delays aging, increases muscle mass, improves cardiovascular system functional capacity, enhances athletic abilities, and weight loss. Amount of recommended exercise regimes may be beneficial to the individual’s health profits. It depends on the exercise mode and the individual’s age. Participating in any level of physical activity, even of low intensities, is far better than being physically inactive.

Exercise modes are defined as dynamic or static. Dynamic exercises, such as running, walking, swimming, and cycling, reduce diastolic blood pressure (DBP) at rest and during exercise due to the reduced total peripheral resistance (TPR). However, weightlifting causes a sharp increase in systolic blood pressure (BP), DBP, and thus mean arterial blood pressure (MABP), affecting the significant increase of TPR.

Exercises have usually numerous modes, depending on the overall effect they have on the human body, and this book deals with the following two main modes: aerobic and anaerobic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114:1633–44.

    PubMed  Google Scholar 

  2. Stone M, Plisk S, Collins D. Training principles: evaluation of modes and methods of resistance training-a coaching perspective. Sports Biomech. 2002;1:79–103.

    PubMed  Google Scholar 

  3. Rich PR. The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans. 2003;31:1095–105.

    CAS  PubMed  Google Scholar 

  4. MacRae HS, Dennis SC, Bosch AN, et al. Effects of training on lactate production and removal during progressive exercise in humans. J Appl Physiol (1985). 1992;72:1649–56.

    CAS  Google Scholar 

  5. Sagiv M. Exercise cardiopulmonary function in cardiac patients. London: Springer; 2012.

    Google Scholar 

  6. Lukacs A, Barkai L. Effect of aerobic and anaerobic exercises on glycemic control in type 1 diabetic youths. World J Diabetes. 2015;6:534–42.

    PubMed  PubMed Central  Google Scholar 

  7. Wells GD, Selvadurai H, Tein I. Bioenergetic provision of energy for muscular activity. Paediatr Respir Rev. 2009;10:83–90.

    PubMed  Google Scholar 

  8. Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during Intense exercise. J Nutr Metab. 2010;2010:905612. https://doi.org/10.1155/2010/905612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goulet EDB, Melancon MO, Lafreniere D, et al. Impact of mild hypohydration on muscle endurance, power, and strength in healthy, active older men. J Strength Cond Res. 2018;32:3405–15.

    PubMed  Google Scholar 

  10. Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clin Biochem. 2013;46:1339–52.

    CAS  PubMed  Google Scholar 

  11. Malisoux L, Francaux M, Nielens H, et al. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol (1985). 2006;100:771–9.

    Google Scholar 

  12. Cox MM, Nelson David L Chapter 14: Glycolysis, gluconeogenesis, and the pentose phosphate pathway. Lehninger principles of biochemistry (5 ed.). W. H. Freeman & Co; 2008, pp. 527–568.

    Google Scholar 

  13. Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil. 2017;38:143–55.

    CAS  PubMed  Google Scholar 

  14. Ades PA, Savage PD, Toth MJ, et al. High-caloric expenditure exercise: a new approach to cardiac rehabilitation for overweight coronary patients ades: high-caloric exercise overweight coronary patients. Circulation. 2009;119:2671–8.

    PubMed  PubMed Central  Google Scholar 

  15. Thompson PD, Bucner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23:1319–21.

    CAS  PubMed  Google Scholar 

  16. Knight JA. Physical inactivity: associated diseases and disorders. Ann Clin Lab Sci Summer. 2012;42:320–37.

    Google Scholar 

  17. Kylasov A, Gavrov S. Diversity of sport: non-destructive evaluation. Paris: UNESCo: Encyclopedia of Life Support Systems; 2011. p. 462–91.

    Google Scholar 

  18. Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl 2):11–23.

    PubMed  Google Scholar 

  19. Nieuwenburg-van Tilborg EM, Horstman AM, Zwarts B, et al. Physical strain during activities of daily living of patients with coronary artery disease. Clin Physiol Funct Imaging. 2014;34:83–9.

    CAS  PubMed  Google Scholar 

  20. Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91:450–72.

    PubMed  Google Scholar 

  21. Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a029769.

  22. Despres JP. Physical activity, sedentary Behaviours, and cardiovascular health: when will cardiorespiratory fitness become a vital sign? Can J Cardiol. 2016;32:505–13.

    PubMed  Google Scholar 

  23. So C, Pierluissi E. Attitudes and expectations regarding exercise in the hospital of hospitalized older adults: a qualitative study. J Am Geriatr Soc. 2012;60:713–8.

    PubMed  Google Scholar 

  24. Gault ML, Willems MET. Aging, functional capacity and eccentric exercise training. Aging Dis. 2013;4:351–63.

    PubMed  PubMed Central  Google Scholar 

  25. Cholewa J, Guimaraes-Ferreira L, da Silva TT, et al. Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy. J Cell Physiol. 2014;229:1148–56.

    CAS  PubMed  Google Scholar 

  26. Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42:53–61.

    PubMed  PubMed Central  Google Scholar 

  27. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training molecular mechanisms. Circulation. 2010;122:1221–38.

    PubMed  Google Scholar 

  28. Manini TM, Pahor M. Physical activity and maintaining physical function in older adults. Br J Sports Med. 2009;43:28–31.

    CAS  PubMed  Google Scholar 

  29. Saghiv MS, Goldhammer E, Sagiv M, et al. Effects of aerobic exercise training on S-Klotho in young and elderly. J J Physiology. 2015;1(1):001.

    Google Scholar 

  30. Kokkinos P. Physical activity, health benefits, and mortality risk. https://doi.org/10.5402/2012/718789.

  31. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18:57–89.

    PubMed  PubMed Central  Google Scholar 

  32. Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49:1567–78.

    PubMed  Google Scholar 

  33. Laine MK, Johan G, Eriksson JG, Kujala UM. Effect of intensive exercise in early adult life on telomere length in later life in men. J Sports Sci Med. 2015;14:239–45.

    PubMed  PubMed Central  Google Scholar 

  34. Short KR, Sedlock DA. Excess postexercise oxygen uptake and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83:153–9.

    CAS  PubMed  Google Scholar 

  35. Lyerly GW, Sui X, Lavie CJ, et al. The association between cardiorespiratory fitness and risk of all-cause mortality among women with impaired fasting glucose or undiagnosed diabetes mellitus. Mayo Clin Proc. 2009;84:780–6.

    PubMed  PubMed Central  Google Scholar 

  36. Booth FW, Roberts CK, Thyfault JP, et al. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97:1351–402.

    PubMed  PubMed Central  Google Scholar 

  37. Xu JQ, Murphy SL, Kochanek KD, et al. Deaths: final data for 2013 Cdc-pdf [PDF-7.3M]. National vital statistics report. 2016:64(2).

    Google Scholar 

  38. Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018;320:2020–8.

    PubMed  Google Scholar 

  39. Witvrouwen I, Van Craenenbroeck EM, Abreu A, et al. Exercise training in women with cardiovascular disease: differential response and barriers – review and perspective. Eur J Prev Cardiol. 2019; https://doi.org/10.1177/2047487319838221.

  40. Chang P, Nead KT, Olin JW, et al. Effect of physical activity assessment on prognostication for peripheral artery disease and mortality. Mayo Clin Proc. 2015;90:339–45.

    PubMed  Google Scholar 

  41. Martinez-Gomez D, Guallar-Castillon P, Higueras-Fresnillo S, et al. Physical activity attenuates total and cardiovascular mortality associated with physical disability: a national cohort of older adults. J Gerontol A Biol Sci Med Sci. 2018;73:240–7.

    PubMed  Google Scholar 

  42. Myers J. Exercise and cardiovascular health. https://doi.org/10.1161/01.CIR.0000048890.59383.8DCirculation

  43. Fagard RH. The ALLHAT trial: strengths and limitations. J Hypertens. 2003;21:229–32.

    CAS  PubMed  Google Scholar 

  44. Mihl C, Dassen WRM, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008;16:129–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rawlins J, Bhan A, Sharma S. Left ventricular hypertrophy in athletes. Eur J Echocardiogr. 2009;10:350–6.

    PubMed  Google Scholar 

  46. Runte K, Brosien K, Salcher-Konrad M, et al. Hemodynamic changes during physiological and pharmacological stress testing in healthy subjects, aortic stenosis and aortic coarctation patients – a systematic review and meta-analysis. Front Cardiovasc Med. 2019;6:43. https://doi.org/10.3389/fcvm.2019.00043.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sagiv M, Hanson PG, Ben-Sira D, et al. Direct vs indirect blood pressure at rest and during isometric exercise in normal subjects. Int J Sports Med. 1995;16:514–8.

    CAS  PubMed  Google Scholar 

  48. Carabello B, Zile MR, Tanaka R, et al. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Phys. 1992;263(4 Pt 2):H1137–44.

    CAS  Google Scholar 

  49. Ertelt T. Walking with chronic non-specific low back pain – a failed strategy: what can we learn from sports? Med Hypotheses. 2014;82:601–5.

    PubMed  Google Scholar 

  50. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry: life at the molecular level. 4th ed. Hoboken, NJ: Wiley; 2013.

    Google Scholar 

  51. Nishikawa KC, Lindstedt SL, LaStayo CP. Basic science and clinical use of eccentric contractions: history and uncertainties. J Sport Health Sci. 2018;7:265–74.

    PubMed  PubMed Central  Google Scholar 

  52. Plowman SA, Smith DL. Exercise physiology for health, fitness, and performance: Lippincott Williams & Wilkins; 2007. p. 61.

    Google Scholar 

  53. Oranchuk DJ, Storey AG, Nelson AR, et al. Isometric training and long-term adaptations: effects of muscle length, intensity, and intent: a systematic review. Scand J Med Sci Sports. 2019;29:484–503.

    PubMed  Google Scholar 

  54. Ehrsam JK, Kerrigan DJ, Keteyian SJ. Advanced exercise physiology: essential concepts and applications. Human Kinetics: Champaign IL; 2018.

    Google Scholar 

  55. Schmolesky MT, Webb DL, Hansen RA. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J Sports Sci Med. 2013;12:502–11.

    PubMed  PubMed Central  Google Scholar 

  56. Montero D, Díaz-Canestro C. Endurance training and maximal oxygen consumption with ageing: role of maximal cardiac output and oxygen extraction. Eur J Prev Cardiol. 2016;23:733–43.

    PubMed  Google Scholar 

  57. Gronwald T, Hoos O, Ludyga S, et al. Non-linear dynamics of heart rate variability during incremental cycling exercise. Res Sports Med. 2018;24:1–11. https://doi.org/10.1080/15438627.2018.1502182.

    Article  Google Scholar 

  58. Baguet A, Everaert I, Hespel P, et al. A new method for non-invasive estimation of human muscle fiber type composition. PLoS One. 2011;6(7):e21956. https://doi.org/10.1371/journal.pone.0021956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fulda KG, Lykens K. Ethical issues in predictive genetic testing: a public health perspective. J Med Ethics. 2006;32:143–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ben-Sira D, Goldhammer E, Saghiv M, et al. Effects of all out-cycling bouts on left ventricular function in master cyclists. J J Geronto. 2017;3(1):025.

    Google Scholar 

  61. Goodwin ML, Harris JE, Hernandez A, Gladden LB. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol. 2007;1:558–69.

    PubMed  PubMed Central  Google Scholar 

  62. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2004;2(10):e294.

    PubMed  PubMed Central  Google Scholar 

  63. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142. https://doi.org/10.3389/fphys.2012.00142.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Khan AM, Paridon SM, Kim YY. Cardiopulmonary exercise testing in adults with congenital heart disease. Expert Rev Cardiovasc Ther. 2014;12:863–72.

    CAS  PubMed  Google Scholar 

  65. Kaminsky DA, Knyazhitskiy A, Sadeghi A, et al. Assessing maximal exercise capacity: peak work or peak oxygen consumption? Respir Care. 2014;59:90–6.

    PubMed  Google Scholar 

  66. Saghiv M, Sagiv M, Ben-Sira D, et al. What maintains total energy release at peak anaerobic effort in young and old men? ARC J Res Sports Med. 2016;1:4–8.

    Google Scholar 

  67. Golbidi S, Laher I. Exercise and the cardiovascular system. Cardiol Res Pract. 2012;2012:210852. https://doi.org/10.1155/2012/210852.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Trappe S, Luden N, Minchev K, et al. Skeletal muscle signature of a champion sprint runner. J Appl Physiol (1985). 2015;118:1460–6.

    PubMed Central  Google Scholar 

  69. Romano AH, Conway T. Evolution of carbohydrate metabolic pathways. Res Microbiol. 1996;147:448–55.

    CAS  PubMed  Google Scholar 

  70. Hurley B, Armstrong TJ. Bisphosphonates vs exercise for the prevention and treatment of osteoporosis. J Nurse Pract. 2012;8:217–24.

    Google Scholar 

  71. Steffl M, Bohannon RW, Sontakova L, et al. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging. 2017;12:835–45.

    PubMed  PubMed Central  Google Scholar 

  72. Slade JM, Miszko TA, Laity JH, et al. Anaerobic power and physical function in strength-trained and non-strength-trained older adults. J Gerontol A Biol Sci Med Sci. 2002;57:M168–72.

    PubMed  Google Scholar 

  73. Robinson SL, Lambeth-Mansell A, et al. A nutrition and conditioning intervention for natural bodybuilding contest preparation: case study. J Int Soc Sports Nutr. 2015;12:20. https://doi.org/10.1186/s12970-015-0083-x.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ferrara CM, Oldberg AP, Ortmeyer HK, et al. Effects of aerobic and resistanceexercise training on glucose disposal and skeletal muscle metabolism in older men. J Gerontol A Biol Sci Med Sci. 2006;61:480–7.

    PubMed  Google Scholar 

  75. Foster C, Farland CV, Guidotti F, et al. The effects of high intensity interval training vs steady state training on aerobic and anaerobic capacity. J Sports Sci Med. 2015;14:747–55.

    PubMed  PubMed Central  Google Scholar 

  76. Carfagno D, Hendrix J. Overtraining syndrome in the athlete. Curr Sports Med Rep. 2014;13:45–51.

    PubMed  Google Scholar 

  77. Skoog E, Shin JH, Saez-Jimenez V, et al. Biobased adipic acid – the challenge of developing the production host. Biotechnol Adv. 2018;36:2248–63.

    CAS  PubMed  Google Scholar 

  78. Robineau J, Babault N, Piscione J, et al. Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. J Strength Cond Res. 2016;30:672–83.

    PubMed  Google Scholar 

  79. Burnside WS, Snowden C. Physiological basis of preoperative cardiopulmonary exercise testing. Surgery (Oxford). 2014;32:59–62.

    Google Scholar 

  80. Goodenkuf R, Heesch M, Hassenstab B, et al. Acute high intensity anaerobic training and rhabdomyolysis. Int J Exerc Sci. 2015;8:65–74.

    Google Scholar 

  81. Amann M. Pulmonary system limitations to endurance exercise performance in humans. Exp Physiol. 2012;97:311–8.

    PubMed  Google Scholar 

  82. Eroglu O, Zileli R, Nalbant MA, et al. Prevalence of alpha actinin-3 gene (ACTN3) R577X and angiotensin converting enzyme (ACE) insertion/deletion gene polymorphisms in national and amateur Turkish athletes. Cell Mol Biol (Noisy-le-Grand). 2018;64:24–8.

    Google Scholar 

  83. Saghiv M, Goldhammer E, Sagiv M, et al. Klotho gene expression responses to long lasting aerobic training and aging. J J Geronto. 2015;1(2):009.

    Google Scholar 

  84. West JB. Vulnerability of pulmonary capillaries during exercise. Exerc Sport Sci Rev. 2004;32:24–30.

    PubMed  Google Scholar 

  85. Clark AL, Poole-Wilson PA, Coats AJ. Relation between ventilation and carbon dioxide production in patients with chronic heart failure. J Am Coll Cardiol. 1992;20:1326–32.

    CAS  PubMed  Google Scholar 

  86. Sabbah HN, Anbe DT, Stein PD. Negative intraventricular diastolic pressure in patients with mitral stenosis: evidence of left ventricular diastolic suction. Am J Cardiol. 1980;45:562–6.

    CAS  PubMed  Google Scholar 

  87. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.

    CAS  PubMed  Google Scholar 

  88. Wilmore JH, Costill DL, Kenney WL. Physiology of sport and exercise. 4th ed. Champaign, IL: Human Kinetics; 2008.

    Google Scholar 

  89. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    CAS  PubMed  Google Scholar 

  90. Rivera-Brown AM, Frontera WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM&R. 2012;4:797–804.

    Google Scholar 

  91. Tucker WJ, Lijauco CC, Hearon CM Jr, et al. Mechanisms of the improvement in peak VO2 with exercise training in heart failure with reduced or preserved ejection fraction. Heart Lung Circul. 2018;27:9–21.

    Google Scholar 

  92. Garber CE, Blissmer B, Deschenes MR, Franklin BA, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011 Jul;43(7):1334–59.

    PubMed  Google Scholar 

  93. Lameris TW, de Zeeuw S, Alberts G, et al. Time course and mechanism of myocardial catecholamine release during transient ischemia in vivo. Circulation. 2000;101:2645–50.

    CAS  PubMed  Google Scholar 

  94. Martin J, MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595:2915–30.

    Google Scholar 

  95. Lindgren M, Alex C, Shapiro PA, et al. Effects of aerobic conditioning on cardiovascular sympathetic response to and recovery from challenge. Psychophysiology. 2013;50:963–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kingsley JD, Figueroa A. Acute and training effects of resistance exercise on heart rate variability. Clin Physiol Funct Imaging. 2016;36:179–87.

    PubMed  Google Scholar 

  97. Lakin R, Notarius C, Thomas S, Goodman J. Effects of moderate-intensity aerobic cycling and swim exercise on post-exertional blood pressure in healthy young untrained and triathlon-trained men and women. Clin Sci (Lond). 2013;125:543–53.

    Google Scholar 

  98. Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95:549–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Regitz-Zagrosek V. Sex and gender differences in health science and society series on sex and science. EMBO Rep. 2012;13:596–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nindl BC, Scoville CR, Sheehan KM, et al. Gender differences in regional body composition and somatotrophic influences of IGF-I and leptin. J Appl Physiol. 2002;92:1611–8.

    CAS  PubMed  Google Scholar 

  101. Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6(Suppl 1):60–75.

    PubMed  PubMed Central  Google Scholar 

  102. Alhadad SB, Tan PMS, Lee JKW. Efficacy of heat mitigation strategies on core temperature and endurance exercise: a meta-analysis. Front Physiol. 2019; https://doi.org/10.3389/fphys.2019.00071.

  103. Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–58.

    CAS  PubMed  Google Scholar 

  104. Hanna EG, Tait PW. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int J Environ Res Public Health. 2015;12:8034–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ponganis PJ. Diving mammals. Compr Physiol. 2011;1:447–65.

    PubMed  Google Scholar 

  106. New K, Bailey DM, Campbell I. Extremes of barometric pressure. Anaesth Intens Care Med. 2005;6:376–9.

    Google Scholar 

  107. Doolette DJ, Mitchell SJ. Hyperbaric conditions. Compr Physiol. 2011:163–201.

    Google Scholar 

  108. Moon RE, Cherry AD, Stolp BW, et al. Pulmonary gas exchange in diving. J Appl Physiol. 2009;106:668–77.

    CAS  PubMed  Google Scholar 

  109. Brubakk AO, Neuman TS. Bennett and Elliott’s physiology and medicine of diving, 5th Rev ed. Philadelphia, PA: Saunders; 2003. p. 800.

    Google Scholar 

  110. Papadopoulou V, Eckersley RJ, Balestra C, Karapantsios TD, Tang MX. A critical review of physiological bubble formation in hyperbaric decompression. Adv Colloid Interface Sci. 2013;191–192:22–30.

    PubMed  Google Scholar 

  111. Grover I, Reed W, Neuman T. The SANDHoG criteria and its validation for the diagnosis of DCS arising from bounce diving. Undersea Hyperb Med. 2007;34:199–210.

    CAS  PubMed  Google Scholar 

  112. Young AJ, Berryman CE, Kenefick RW, et al. Altitude acclimatization alleviates the hypoxia-induced suppression of exogenous glucose oxidation during steady-state aerobic exercise. Front Physiol. 2018;9:830. https://doi.org/10.3389/fphys.2018.00830.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ruggiero L, Hoiland RL, Hansen AB, Ainslie PN, McNeil CJ. UBC-Nepal expedition: peripheral fatigue recovers faster in Sherpa than lowlanders at high altitude. J Physiol. 2018;596:5365–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Storz JF, Cheviron ZA, McClelland GB, Scott GR. Evolution of physiological performance capacities and environmental adaptation: insights from high-elevation deer mice (Peromyscus maniculatus). J Mammal. 2019;100(3):910–22.

    PubMed  PubMed Central  Google Scholar 

  115. Taylor AT. Risk factors, prevention, and treatment. Rambam Maimonides Med J. https://doi.org/10.5041/RMMJ.10022.

  116. Moore LG. Measuring high-altitude adaptation. J Appl Physiol (1985). 2017;123:1371–85.

    CAS  Google Scholar 

  117. Eckman M. Professional guide topathophysiology. 3rd ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2010. p. 208.

    Google Scholar 

  118. Murray AJ. Energy metabolism and the high-altitude environment. Exp Physiol. 2016;101:23–7.

    CAS  PubMed  Google Scholar 

  119. Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, et al. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet. 2012;8(12):e1003110. https://doi.org/10.1371/journal.pgen.1003110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Simonson TS, Huff CD, Witherspoon DJ, et al. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Exp Physiol. 2015;100:1263–8.

    CAS  PubMed  Google Scholar 

  121. Bigham A, Bauchet M, Pinto D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genetics. 2010;6(9):e1001116. https://doi.org/10.1371/journal.pgen.1001116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vernikos J, Schneider VS. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology. 2010;56:157–66.

    PubMed  Google Scholar 

  123. Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985). 2016;120:891–903.

    Google Scholar 

  124. Marshall-Goebel K, Mulder E, Donoviel D, et al. An international collaboration studying the physiological and anatomical cerebral effects of carbon dioxide during head-down tilt bed rest: the SPACECoT study. J Appl Physiol (1985). 2017;122:1398–405.

    CAS  Google Scholar 

  125. Cardus D, McTaggart WG. Artificial gravity as a countermeasure of physiological deconditioning in space. Adv Space Res. 1994;14:409–14.

    CAS  PubMed  Google Scholar 

  126. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.

    PubMed  PubMed Central  Google Scholar 

  127. Blagosklonny MV, Campisi J, Sinclair DA, et al. Impact papers on aging in 2009. Aging (Albany NY). 2010;2:111–21.

    CAS  PubMed Central  Google Scholar 

  128. Koopman R. Role of amino acids and peptides in the molecular signaling in skeletal muscle after resistance exercise. Int J Sport Nutr Exerc Metab. 2007;17(Suppl):S47–57.

    CAS  PubMed  Google Scholar 

  129. Churchward-Venne TA, Murphy CH, Longland TM, et al. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids. 2013;45:231–40.

    CAS  PubMed  Google Scholar 

  130. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    PubMed  PubMed Central  Google Scholar 

  131. Walter CA, Zhou ZQ, Manguino D, et al. Health span and life span in transgenic mice with modulated DNA repair. Ann N Y Acad Sci. 2001;928:132–40.

    CAS  PubMed  Google Scholar 

  132. Ronn T, Volkov P, Davegardh C, et al. Six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9:e1003572. https://doi.org/10.1371/journal.pgen.1003572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ntanasis-Stathopoulos J, Tzanninis JG, Philippou A, et al. Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact. 2013;13:133–46.

    CAS  PubMed  Google Scholar 

  134. Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53:255–67.

    PubMed  Google Scholar 

  135. Lim JY. Therapeutic potential of eccentric exercises for age-related muscle atrophy. Integr Med Res. 2016;5:176–81.

    PubMed  PubMed Central  Google Scholar 

  136. Sagiv M, Goldhammer E, Ben-Sira D, et al. What maintains energy supply at peak aerobic exercise in trained and untrained older men? Gerontology. 2007;53:357–61.

    PubMed  Google Scholar 

  137. Strandberg TE, Sirola J, Pitkala KH, et al. Association of midlife obesity and cardiovascular risk with old age frailty: a 26-year follow-up of initially healthy men. Int J Obes (Lond). 2012;36:1153–7.

    CAS  Google Scholar 

  138. Vina J, Tarazona-Santabalbina FJ, Perez-Ros P, et al. Biology of frailty: modulation of ageing genes and its importance to prevent age-associated loss of function. Mol Asp Med. 2016;50:88–108.

    Google Scholar 

  139. Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med. 2003;33:877–88.

    PubMed  Google Scholar 

  140. Feng Z, Hanson RW, Berger NA, et al. Reprogramming of energy metabolism as a driver of aging. Oncotarget. 2016;7:15410–20.

    PubMed  PubMed Central  Google Scholar 

  141. Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome. 2018;29:48–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58:2718–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Proctor DN, Parker BA. Vasodilation and vascular control in contracting muscle of the aging human. Microcirculation. 2006;13:315–27.

    CAS  PubMed  Google Scholar 

  144. Hart CR, Layec G, Trinity JD, et al. Evidence of preserved oxidative capacity and oxygen delivery in the plantar flexor muscles with age. J Gerontol A Biol Sci Med Sci. 2015;70:1067–76.

    CAS  PubMed  Google Scholar 

  145. Baldwin KM, Haddad F. Research in the exercise sciences: where we are and where do we go from here – Part II. Exerc Sport Sci Rev. 2010;38:42–50.

    PubMed  PubMed Central  Google Scholar 

  146. Ding Q, Vaynman S, Akhavan M, et al. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006;140:823–33.

    CAS  PubMed  Google Scholar 

  147. Basset DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

    Google Scholar 

  148. Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exec. 2008;40:3–8.

    CAS  Google Scholar 

  149. Poole DC, Jones AM. Measurement of the maximum oxygen uptake V̇o2max: V̇o2peak is no longer acceptable. J Appl Physiol (1985). 2017;122:997–1002.

    CAS  Google Scholar 

  150. Lodder MAN, de Haan A, Sargeant AJ. Effect of shortening velocity on work output and energy cost during repeated contractions of the rat EDL muscle. Eur J Appl Physiol. 1991;62:430–5.

    CAS  Google Scholar 

  151. Sagiv M, Metrany R, Fisher N, et al. Comparison of hemodynamic and left ventricular responses to increased after-load in healthy males and females. Int J Sports Med. 1991;12:41–5.

    CAS  PubMed  Google Scholar 

  152. Ma Y, Chen Y, Li X, et al. Aerobic power of students aged 13-15 years in Wuhan City. (Article in Chinese). Wei Sheng Yan Jiu. 2016;45:608–13.

    PubMed  Google Scholar 

  153. Lolli L, Batterham AM, Weston KL, et al. Size exponents for scaling maximal oxygen uptake in over 6500 humans: a systematic review and meta-analysis. Sports Med. 2017;47:1405–19.

    PubMed  Google Scholar 

  154. Gouzi F, Maury J, Molinari N, et al. Reference values for vastus lateralis fiber size and type in healthy subjects over 40 years old: a systematic review and metaanalysis. J Appl Physiol (1985). 2013;115:346–54.

    Google Scholar 

  155. Lenell C, Johnson AM. Sexual dimorphism in laryngeal muscle fibers and ultrasonic vocalizations in the adult rat. Laryngoscope. 2017;127(8):E270–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Mierzejewska-Krzyżowska B, Drzymała-Celichowska H, Bukowska D, et al. Gender differences in morphometric properties of muscle fibres measured on cross-sections of rat hindlimb muscles. Anat Histol Embryol. 2012;41:122–9.

    PubMed  Google Scholar 

  157. Kang J, Hoffman JR, Chaloupka EC, et al. Gender differences in the progression of metabolic responses during incremental exercise. J Sports Med Phys Fitness. 2006;46:71–8.

    CAS  PubMed  Google Scholar 

  158. Terjung RL, Zarzeczny R, Yang HT. Muscle blood flow and mitochondrial function: influence of aging. Int J Sport Nutr Exerc Metab. 2002;12:368–78.

    PubMed  Google Scholar 

  159. Renna BF, Kubo H, MacDonnell SM, et al. Enhanced acidotic myocardial Ca2+ responsiveness with training in hypertension. Med Sci Sports Exerc. 2006;38:847–55.

    CAS  PubMed  Google Scholar 

  160. Thomas L, Levett K, Boyd A, Leung DY, et al. Changes in regional left atrial function with aging: evaluation by Doppler tissue imaging. Eur J Echocardiogr. 2003;4:92–100.

    CAS  PubMed  Google Scholar 

  161. Zeiher J, Ombrellaro KJ, Perumal N, et al. Correlates and determinants of cardiorespiratory fitness in adults: a systematic review. Sports Med Open. 2019;5(1):39. https://doi.org/10.1186/s40798-019-0211-2.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sagiv M, Ben-Sira D, Goldhammer E, et al. Left ventricular contractility and function at peak aerobic and anaerobic exercises. Med Sci Sports Exerc. 2000;32:1197–201.

    CAS  PubMed  Google Scholar 

  163. Scott JM, Esch BT, Haykowsky MJ, et al. Sex differences in left ventricular function and beta-receptor responsiveness following prolonged strenuous exercise. J Appl Physiol (1985). 2007;102:681–7.

    Google Scholar 

  164. Morishita S, Tsubaki A, Shirai N. Physical function was related to mortality in patients with chronic kidney disease and dialysis. Hemodial Int. 2017;21:483–9.

    PubMed  Google Scholar 

  165. Aoike DT, Baria F, Kamimura MA, et al. Impact of home-based aerobic exercise on the physical capacity of overweight patients with chronic kidney disease. Int Urol Nephrol. 2015;47:359–67.

    PubMed  Google Scholar 

  166. Hambrecht R. Stress and stress tolerance in chronic heart failure. Herz. 2002;27:179–86.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghiv, M.S., Sagiv, M.S. (2020). Introduction to Exercise Physiology. In: Basic Exercise Physiology. Springer, Cham. https://doi.org/10.1007/978-3-030-48806-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48806-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48805-5

  • Online ISBN: 978-3-030-48806-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics