Skip to main content

Part of the book series: Food Bioactive Ingredients ((FBC))

Abstract

Thymoquinone (TQ) is found in nature as one of the constituents of the volatile oil fraction of black seeds (Nigella sativa L.). Nowadays, more research interest is directed toward TQ due to its versatile biological activities especially its anticancer potentials. This chapter will present an overview that covers different aspects of TQ including its origin in N. sativa seeds and the different factors that can affect its content in the crude and the volatile oil of the seeds. The analytical chromatographic tools that are usually used for the detection and quantification of TQ in the crude oil of N. sativa and its volatile fraction will be reviewed. The author will discuss the biological activities of TQ with especial emphasis on its anticancer potentials. Strategies to overcome the drawbacks that can limit the practical applications of TQ as a promising anticancer agent such as its potential toxicity and low stability will be also discussed. Finally, the author will refer to the production of TQ either by isolation from its natural sources like N. sativa oil or by organic synthesis from petrochemicals. That segment of the chapter will also refer to the aspects of enhancing the anticancer activity of TQ by synthesizing new TQ-analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

TQ:

Thymoquinone

References

  • Abou-Basha, L., Rashed, M., & Aboul-Enein, H. (1995). TLC assay of thymoquinone in black seed oil (Nigella Sativa L.) and identification of dithymoquinone and thymol. Journal of Liquid Chromatography, 8(1), 105–115.

    Article  Google Scholar 

  • AbuKhader, M. (2012). The effect of route of administration in thymoquinone toxicity in male and female rats. Indian Journal of Pharmaceutical Sciences, 74(3), 195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, N., Ahmad, R., Alam, A., Samim, M., Iqbal, Z., & Ahmad, F. (2016). Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. International Journal of Biological Macromolecules, 88, 320–332.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, N., Ahmad, R., Al-layly, A., Al-shawi, H., Al-ali, A., Amir, M., & Mostafa, A. (2018). Ultra-high-performance liquid chromatography-based identification and quantification of thymoquinone in Nigella sativa extract from different geographical regions. Pharmacognosy Magazine, 14(57), 471–480.

    Article  CAS  Google Scholar 

  • Al-Ali, A., Alkhawajah, A., Randhawa, A., & Shaikh, A. (2008). Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. Journal of Ayub Medical College, Abbottabad, 20(2), 25–27.

    PubMed  Google Scholar 

  • Alobaedi, O., Talib, W., & Basheti, I. (2017). Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pacific Journal of Tropical Medicine, 10(4), 400–408.

    Article  CAS  PubMed  Google Scholar 

  • Al-Qubaisi, M., Rasedee, A., Flaifel, M., Eid, E., Al-Ali, S., Alhassan, F., Salih, A., Hussein, M., Zainal, Z., Sani, D., Aljumaily, A., & Saeed, M. (2019). Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties. European Journal of Pharmaceutical Sciences, 133, 167–182.

    Article  CAS  PubMed  Google Scholar 

  • Al-Saleh, I., Billedo, G., & El-Doush, I. (2006). Levels of selenium, DL-a-tocopherol, DL-g-tocopherol, all-trans-retinol, thymoquinone and thymol in different brands of Nigella sativa seeds. Journal of Food Composition and Analysis, 19, 167–175.

    Article  CAS  Google Scholar 

  • Ashraf, M., Ali, Q., & Iqbal, Z. (2006). Effect of nitrogen application rate on the content and composition of oil, essential oil and minerals in black cumin (Nigella sativa L.) seeds. Journal of the Science of Food and Agriculture, 86(6), 871–876.

    Article  CAS  Google Scholar 

  • Badary, O., Al-Shabanah, A., Nagi, N., Al-Bekairi, M., & Almazar, A. (1998). Acute and subchronic toxicity of thymoquinone in mice. Drug Development Research, 44, 56–61.

    Article  Google Scholar 

  • Ballout, F., Habli, Z., Rahal, O., Fatfat, M., & Gali-Muhtasib, H. (2018). Thymoquinone-based nanotechnology for cancer therapy: Promises and challenges. Drug Discovery Today, 23(5), 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S., Ahir, M., Patra, P., Mukherjee, S., Ghosh, S., Mazumdar, M., Chattopadhyay, S., Das, T., Chattopadhyay, D., & Adhikary, A. (2015). PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials, 51, 91–107.

    Article  CAS  PubMed  Google Scholar 

  • Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14, 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Dergarabetian, E., Ghattass, K., El-Sitt, S., Al-Mismar, R., El-Baba, C., Itani, W., Melhem, N., El-Hajj, H., Bazarbachi, A., Schneider-Stock, R., & Gali-Muhtasib, H. (2013). Thymoquinone induces apoptosis in malignant T-cells via generation of ROS. Frontiers in Bioscience, 5, 706–719.

    Article  Google Scholar 

  • Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H., & Atyabi, F. (2011). Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. International Journal of Nanomedicine, 6, 877–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dockal, E., Cass, Q., Brocksom, T., Brocksom, U., & CorrÄ›a, A. (1985). A simple and efficient synthesis of thymoquinone and methyl P-benzoquinone. Synthethic Communications, 15(11), 1033–1036.

    Article  CAS  Google Scholar 

  • Edris, A. (2010). Evaluation of the volatile oils from different local cultivars of Nigella sativa L. grown in Egypt with emphasis on the effect of extraction method on thymoquinone. Journal of Essential Oil-Bearing Plants, 13(2), 154–164.

    Article  CAS  Google Scholar 

  • Edris, A. (2017). Isolation of pure thymoquinone crystals from the volatile oil fraction of Nigella sativa using nanometric method. Pending patent No. 2017/1753. Cairo: Academy of Scientific Research and Technology, Assigned to the National Research Center.

    Google Scholar 

  • Edris, A., Kalemba, D., Adamiec, J., & Piatkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333.

    Article  CAS  PubMed  Google Scholar 

  • Edris, A., Wawrzyniak, P., & Kalemba, D. (2018). Subcritical CO2 extraction of a volatile oil-rich fraction from the seeds of Nigella sativa for potential pharmaceutical and nutraceutical applications. Journal of Essential Oil Research, 30(2), 84–91.

    Article  CAS  Google Scholar 

  • Effenberger-Neidnicht, K., & Schobert, R. (2011). Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemotherapy and Pharmacology, 67, 867–874.

    Article  CAS  PubMed  Google Scholar 

  • El-Ashmawy, N., Khedr, E., Ebeid, E., Salemc, M., Zidan, A., & Mosalam, E. (2017). Enhanced anticancer effect and reduced toxicity of doxorubicin in combination with thymoquinone released from poly-N-acetyl glucosamine nanomatrix in mice bearing solid Ehrlish carcinoma. European Journal of Pharmaceutical Sciences, 109, 525–532.

    Article  CAS  PubMed  Google Scholar 

  • El-Dakhakhny, M. (1963). Studies on the chemical constitution of Egyptian Nigella sativa L. seeds. II1. The essential oil. Planta Medica, 11(04), 465–470.

    Article  CAS  Google Scholar 

  • El-Far, H., Al Jaouni, K., Li, W., & Mousa, A. (2018). Protective roles of thymoquinone nanoformulations: Potential nanonutraceuticals in human diseases. Nutrients, 10(10), 1368–1380.

    Article  CAS  Google Scholar 

  • El-Ghawwas, O. (2002). Studies on the effect of some organic fertilizers on Nigella sativa, L. plants. Egyptian Journal of Applied Science, 17(6), 325–344.

    Google Scholar 

  • El-Najjar, N., Chatila, M., Moukadem, H., Vuorela, H., Ocker, M., Gandesiri, M., Schneider-Stock, R., & Gali-Muhtasib, H. (2010). Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis, 15(2), 183–195.

    Article  CAS  PubMed  Google Scholar 

  • El-Tahir, K., Al-Ajmi, F., & Al-Bekairi, M. (2003). Some cardiovascular effects of the dethymoquinonated Nigella sativa volatile oil and its major components α-pinene and p-cymene in rats. Saudi Pharmaceutical Journal, 11, 104–110.

    Google Scholar 

  • Fahmy, H., Fathy, M., Abd-elbadia, R., & Elshemey, W. (2019). Targeting of thymoquinone-loaded mesoporous silica nanoparticles to different brain areas: In vivo study. Life Sciences, 222, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Fakhria, A., Gilani, S., Imam, S., & Chandrakala. (2019). Formulation of thymoquinone loaded chitosan nano vesicles: In-vitro evaluation and in-vivo anti-hyperlipidemic assessment. Journal of Drug Delivery Science and Technology, 50, 339–346.

    Article  CAS  Google Scholar 

  • Farooqui, Z., Shahid, F., Abidi, S., Parwez, I., & Khan, F. (2017). Oral thymoquinone administration ameliorates: The effect of cisplatin on brush border membrane enzymes, energy metabolism, and redox status in rat kidney. Naunyn-Schmiedeberg's Archives of Pharmacology, 390(12), 1271–1284.

    Article  CAS  PubMed  Google Scholar 

  • Fatfat, M., Fakhoury, I., Habli, Z., Mismar, R., & Gali-Muhtasib, H. (2019). Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms. Life Sciences, 232, 116628.

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich, T., Ndreshkjana, B., Muenzner, K., Reiter, C., Hofmeister, E., Mederer, S., Fatfat, M., El-Baba, C., Gali-Muhtasib, H., Schneider-Stock, R., & Tsogoeva, S. (2017). Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer. ChemMedChem, 12, 226–234.

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich, T., Reiter, C., Saeed, M., Hutterer, C., Hahn, F., Leidenberger, M., Friedrich, O., Kappes, B., Marschall, M., Efferth, T., & Tsogoeva, S. (2018). Synthesis of thymoquinone-artemisinin hybrids: New potent antileukemia, antiviral, and antimalarial agents. ACS Medicinal Chemistry Letters, 9(6), 534–539.

    Article  PubMed  CAS  Google Scholar 

  • Gad, H., & El-Ahmady, S. (2018). Prediction of thymoquinone content in black seed oil using multivariate analysis: An efficient model for its quality assessment. Industrial Crops and Products, 124, 626–632.

    Article  CAS  Google Scholar 

  • Ghosheh, O., Houdi, A., & Crooks, P. (1999). High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). Journal of Pharmaceutical and Biomedical Analysis, 19, 757–762.

    Article  CAS  PubMed  Google Scholar 

  • Goyal, S., Prajapati, C., Gore, P., Patil, C., Mahajan, U., Sharma, C., Talla, S., & Ojha, S. (2017). Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Frontiers in Pharmacology, 8, 656–674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamed, S., Shaaban, H., Ramadan, A., & Edris, A. (2017). Potentials of enhancing the physicochemical and functional characteristics of Nigella sativa oil by using the screw pressing technique for extraction. Grasas y Aceites, 68, e188–e196.

    Article  CAS  Google Scholar 

  • Harzallah, H., Grayaa, R., Kharoubi, W., Maaloul, A., Hammami, M., & Mahjoub, T. (2012). Thymoquinone, the Nigella sativa bioactive compound, prevents circulatory oxidative stress caused by 1,2-dimethylhydrazine in erythrocyte during colon postinitiation carcinogenesis. Oxidative Medicine and Cellular Longevity, 2012. Article ID 854065, 6 pages.

    Google Scholar 

  • Hatiboglu, M., Kocyigit, A., Guler, E., Akdur, K., Khan, I., Nalli, A., Karatas, E., & Tuzgen, S. (2019). Thymoquinone enhances the effect of Gamma Knife in B16-F10 melanoma through inhibition of phosphorylated STAT3. World Neurosurgery, 128, e570–e581.

    Article  PubMed  Google Scholar 

  • Huq, F., & Mazumder, E. (2010). Molecular modelling analysis of the metabolism of thymoquinone. Lidcombe: Discipline of Biomedical Science, School of Medical Sciences, Faculty of Medicine, Cumberland Campus, The University of Sydney. Full article is available on. https://www.researchgate.net/publication/252931947.

    Google Scholar 

  • Imran, M., Rauf, A., Khan, I., Shahbaz, M., Qaisrani, T., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K., & Gondal, T. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine and Pharmacotherapy, 106, 390–402.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, M., Ahmad, A., & Pandey, B. (2018). Solvent based optimization for extraction and stability of thymoquinone from Nigella sativa Linn. and its quantification using RP-HPLC. Physiology and Molecular Biology of Plants, 24(6), 1209–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isik, S., Kartal, M., & Erdem, S. (2017). Quantitative analysis of thymoquinone in Nigella sativa L. (Black cumin) seeds and commercial seed oils and capsules from Turkey. Journal of the Faculty of Pharmacy Ankara, 41(1), 34–41.

    Google Scholar 

  • Islam, T., et al. (2016). Thymoquinone is knocking at the door of clinical trial. International Archives of Medicine, 9(122), 1–25.

    Google Scholar 

  • Johnson-Ajinwo, O., Ullah, I., Mbye, H., Richardson, A., Horrocks, P., & Li, W. (2018). The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorganic & Medicinal Chemistry Letters, 28, 1219–1222.

    Article  CAS  Google Scholar 

  • Kandeil, M., Mahmoud, M., Abdel-Razik, A., & Gomaa, S. (2019). Thymoquinone and geraniol alleviate cisplatin-induced neurotoxicity in rats through downregulating the p 38 MAPK/STAT-1 pathway and oxidative stress. Life Sciences, 228, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Khader, M., Bresgen, N., & Eckl, P. (2009). In vitro toxicological properties of thymoquinone. Food and Chemical Toxicology, 47(1), 129–133.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A., Tania, M., Fu, S., & Fu, J. (2017). Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 8(31), 51907–51919.

    Article  Google Scholar 

  • Kokoska, L., Havlik, J., Valterova, I., Nepovim, A., Rada, V., & Vanek, T. (2005). Chemical composition of the essential oil of Nigella orientalis L. seeds. Flavor and Fragrance Journal, 20(4), 419–420.

    Article  CAS  Google Scholar 

  • Kommineni, N., Saka, R., Bulbake, U., & Khan, W. (2018). Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer. Chemistry and Physics of Lipids, 224. In press.

    Google Scholar 

  • Loomis, D., Guyton, K., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Vilahur, N., Mattock, H., & Straif, K. (2017). Carcinogenicity of benzene. Lancet Oncology, 18(12), 1574–1575.

    Article  PubMed  Google Scholar 

  • Mahmoud, Y., & Abdelrazek, H. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomedicine and Pharmacotherapy, 115, 108783.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, A., Ginawi, T., El-Hadiyah, T., El-Khatib, S., Al-Shabanah, A., & Al-Sawaf, A. (2001). Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: Evidence for antioxidant effects of thymoquinone. Research Communications in Molecular Pathology and Pharmacology, 110, 239–251.

    CAS  PubMed  Google Scholar 

  • Mashayekhi-Sardoo, H., Rezaee, R., & Karimi, G. (2018). An overview of in vivo toxicological profile of Thymoquinone. Toxin Reviews. In press. https://doi.org/10.1080/15569543.2018.1514637.

  • Mohammadabadi, M., & Mozafari, M. (2018). Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. Journal of Drug Delivery Science and Technology, 47, 445–453.

    Article  CAS  Google Scholar 

  • Moretti, A., Filippo D'Antuono, L., & Elementi, S. (2004). Essential oils of Nigella sativa L. and Nigella damascena L. seed. Journal of Essential Oil Research, 16, 182–183.

    Article  CAS  Google Scholar 

  • Nagi, N., & Mansour, A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Ng, K., Yazan, L., Yap, H., Wan, A., How, W., & Abdullah, R. (2015). Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). BioMed Research International, 2015. Article ID 263131.

    Google Scholar 

  • Nguyen, T., Talbi, H., Hilali, A., Anthonissen, R., Maes, A., & Verschaeve, L. (2019). In vitro toxicity, genotoxicity and antigenotoxicity of Nigella sativa extracts from different geographic locations. South African Journal of Botany. In Press. https://doi.org/10.1016/j.sajb.2019.02.015.

  • Nickavar, B., Mojab, F., Javidnia, K., & Amoli, M. (2003). Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Zitung fur Naturforsch, 58(9–10), 629–631.

    Article  CAS  Google Scholar 

  • Norsharina, I., Maznah, I., Aied, A., & Ghanya, A. (2011). Thymoquinone rich fraction from Nigella sativa and thymoquinone are cytotoxic towards colon and leukemic carcinoma cell lines. Journal of Medicinal Plant Research, 5(15), 3359–3366.

    CAS  Google Scholar 

  • Ong, Y., Yazan, L., Ng, W., Noordin, M., Sapuan, S., Foo, J., & Tor, Y. (2016). Acute and subacute toxicity profiles of thymoquinone-loaded nanostructured lipid carrier in BALB/c mice. International Journal of Nanomedicine, 11, 5905–5915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özgüven, M., & Sekeroglu, N. (2007). Agricultural practices for high yield and quality of black cumin (Nigella sativa L.) cultivated in Turkey. Acta Horticulturae, (756), 329–338.

    Google Scholar 

  • Poulose, J., & Croteau, R. (1978). Biosynthesis of aromatic monoterpenes: Conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Archives of Biochemistry and Biophysics, 187(2), 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Rajput, S., Puvvada, N., Kumar, N., Sarkar, S., Konar, S., Bharti, R., Dey, G., Mazumdar, A., Pathak, A., Fisher, B., & Mandal, M. (2015). Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Molecular Pharmaceutics, 12, 4214–4225.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran, S., & Thangarajan, S. (2016). A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington’s disease-like symptoms in Wistar rats. Chemico-Biological Interactions, 256, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M., Al-Marzouqi, A., Kaneez, F., Ashraf, S., & Adem, A. (2007). Comparative evaluation of SFE and solvent extraction methods on the yield and composition of black seeds (Nigella sativa). Journal of Liquid Chromatography & Related Technologies, 30, 1–11.

    Article  CAS  Google Scholar 

  • Ravindran, J., Nair, H., Sung, B., Prasad, S., Tekmal, R., & Aggarwal, B. (2010). Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced antiproliferative, antiinflammatory, and chemosensitization potential. Biochemical Pharmacology, 79, 1640–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmani, M., Asghar, S., Lv, H., & Zhou, J. (2014). Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH, and light. Molecules, 19(5), 5925–5939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider-Stock, R., Fakhoury, I., Zaki, A., El-Baba, C., & Gali-Muhtasib, H. (2014). Thymoquinone: Fifty years of success in the battle against cancer models. Drug Discovery Today, 19(1), 18–30.

    Article  CAS  PubMed  Google Scholar 

  • Seyyedi, S., Moghaddam, P., Khajeh-Hosseini, M., & Shahandeh, H. (2015). Influence of phosphorus and soil amendments on black seed (Nigella sativa L.) oil yield and nutrient uptake. Industrial Crops and Products, 77, 167–174.

    Article  CAS  Google Scholar 

  • Shaarani, S., Hamid, S., & Mohd, H. (2017). The influence of Pluronic F68 and F127 nanocarrier on physicochemical properties, in vitro release, and antiproliferative activity of thymoquinone drug. Pharmacognosy Research, 9(1), 12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugama, M., Arfusob, F., Kumara, A., Wanga, L., Goha, B., Ahnh, K., Bishayeei, A., & Sethia, G. (2018). Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological Research, 129, 357–364.

    Article  CAS  Google Scholar 

  • Sultana, S., Asif, M., & Nazar, M. (2014). Medicinal plants combating against cancer-a green anticancer approach. Asian Pacific Journal of Cancer Prevention, 15, 4385–4394.

    Article  PubMed  Google Scholar 

  • Taleuzzaman, M., Imam, S., & Gilani, S. (2017). Quantitative determination of thymoquinone in Nigella Sativa and its nano formulation using validated stability indicating HPTLC densiometric method. International Current Pharmaceutical Journal, 6(10), 53–60.

    Article  CAS  Google Scholar 

  • Toma, C., Simu, G., Hanganu, D., Olah, N., Vata, F., Hammami, C., & Hammami, M. (2010). Chemical composition of the Tunisian Nigella sativa. note I. Profile on essential oil. Farmacia-Bucuresti, 58(4), 458–464.

    CAS  Google Scholar 

  • Tubesha, Z., Abu Bakar, Z., & Ismail, M. (2013a). Characterization and stability evaluation of thymoquinone nanoemulsions prepared by high-pressure homogenization. Journal of Nanomaterials, 2013. Article ID 453290.

    Google Scholar 

  • Tubesha, Z., Imam, M., Mahmud, R., & Ismail, M. (2013b). Study on the potential toxicity of a thymoquinone-rich fraction nanoemulsion in Sprague Dawley rats. Molecules, 18, 7460–7472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ãœstün, R., OÄŸuz, E., Åžeker, A., & Korkaya, H. (2018). Thymoquinone prevents cisplatin neurotoxicity in primary DRG neurons. Neurotoxicology, 69, 68–76.

    Article  PubMed  CAS  Google Scholar 

  • Velho-Pereira, R., Japtap, A., & Elaridi, J. (2017). Diodistribution and scintigraphic evaluation of microemulsion formulations of technetium-99m-radiolabeled-thymoquinone. Journal of Chemical and Pharmaceutical Research, 9(9), 188–198.

    CAS  Google Scholar 

  • Venkatachallam, S., Pattekhan, H., Divakar, S., & Kadimi, U. (2010). Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. Journal of Food Science and Technology, 47, 598–605.

    Article  CAS  Google Scholar 

  • Wajs, S., Bonikowski, R., & Kalemba, D. (2008). Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavor and Fragrance Journal, 23(2), 126–132.

    Article  CAS  Google Scholar 

  • Yusufi, M., Banerjee, S., Mohammad, M., Khatal, S., Venkateswara, K., Khan, M., Aboukameel, A., Sarkar, H., & Padhye, S. (2013). Synthesis, characterization and anti-tumor activity of novel thymoquinone analogs against pancreatic cancer. Bioorganic and Medicinal Chemistry Letters, 23(10), 3101–3104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edris, A.E. (2021). Thymoquinone: Chemistry and Functionality. In: Fawzy Ramadan, M. (eds) Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-48798-0_8

Download citation

Publish with us

Policies and ethics