Skip to main content

NON-CONVENTIONAL TECHNIQUES FOR CONCEALED DEPOSITS

  • Chapter
  • First Online:
Geochemical Exploration and Modelling of Concealed Mineral Deposits
  • 294 Accesses

Abstract

Non-conventional techniques of exploration specially for concealed mineral deposits, present in any part of the world, require some new approaches that may be applied for this purpose. In this regard, Geological Survey of India through its Field Technique Research Unit (FTRU) tried to develop some new techniques of exploration of concealed mineral deposits since 70s of last century. GSI tried to standardize some such new techniques which will be discussed in this chapter. Most of the mineral deposits of the world are generally not exposed at the earth’s surface. These may be partly or wholly concealed by thick residual soil or buried beneath the rock formation. To locate these deposits, some conventional geochemical exploration techniques are generally employed to locate these deposits based on systematic measurement of one or more chemical property in different sample media like rock, soil, weathered profile, glacial debris, stream sediment, water, plant etc. as described earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anon (1976). Mercury vapour trap for exploration of concealed base metal mineralization. Geol Survey of India News, 7(4): 9.

    Google Scholar 

  • Banerjee, Buddhadeb, De, S.S. and Das, L.K. (1992). Exploration of Metallic Minerals and their discrimination using partial extraction of metals by Electrolysis (PEXMEL) Method. Jour. Geol. Soc. of India, 40: 151-161.

    Google Scholar 

  • Cameron, E.M. and Jonasson, I.R. (1972). Mercury in Precambrian shales of the Canadian shield. Geochim et Cosmochim Acta., 36(9): 985-1006.

    Article  Google Scholar 

  • Chilov, S. (1975). Determination of small amount of mercury – A review. Talanta, 22: 205-232.

    Article  Google Scholar 

  • Das Gupta, S.P. (1964). Genesis of sulphide mineralisation in Khetri copper belt, Rajasthan, India. Report 22nd Int. Geol. Congr. Pt., 5: 239-256.

    Google Scholar 

  • Das Gupta, S.P. (1968). Structural history of the Khetri copper belt, Jhunjhunu and Sikar Dist., Rajasthan. Mem. Geol. Surv. Ind., 98: 170.

    Google Scholar 

  • Das Gupta, S.P. (1974). Geological setting and origin of sulphide deposits in the Khetri Copper Belt, Rajasthan. Geol. Min. Met. Soc. Ind. Golden Jubilee Volume: 223-238.

    Google Scholar 

  • Davy, R. and Stokes, M. (1976). A preliminary evaluation of the use of sulphur dioxide as a prospecting tool in W. Australia. West. Aust. Geol. Surv. Geochem. Report, 8: 72-76.

    Google Scholar 

  • Deb, M. and Pal, T. (2004). Geology and genesis of base metal sulphide deposits in the Dariba-Rajpura-Bethumni Belt, Rajasthan India in the light of basin evolution. In: Deb, M. and Goodfellow, W.D. (Eds.), Sediment hosted lead-zinc sulphide deposits: Attributes and models of some major deposits in India, Australia and Canada. Narosa Publishing House. New Delhi, pp. 304-327.

    Google Scholar 

  • Doe, B.R. and Stacey, J.S. (1974). The application of the lead isotopes in the problem of ore genesis and ore prospect evaluation: A review. Econ. Geol., 67: 757-776.

    Article  Google Scholar 

  • Green, G.R., Ohmoto, H., Date, J. and Takahashi, T. (1983). Whole rock oxygen isotope distribution in the Fukazawa-Kosaka area, Hokuroku district, Japan, and its potential application to mineral exploration. Econ. Geol. (Monograph), 5: 395-411.

    Google Scholar 

  • Gulson, B.L. (1977). Application of lead isotopes and trace elements to mapping black shales around a base metal sulphide deposit. Jour. Geochem. Explo, 8: 85-104.

    Article  Google Scholar 

  • Jayaram, B.M. and Ravindran, K.V. (1979). Copper deposits in Aladahalli area, Hassan District, Karnataka. Indian Miner., 33(3): 33-44.

    Google Scholar 

  • Jonasson, I.R. and Boyle, R.W. (1972). Geochemistry of mercury and origins of natural contamination of the environment. CIM Transactions, 75: 8-15.

    Google Scholar 

  • McCarthy, J., Vaughn, W.W., Learned, R.E. and Meuschke, J.L. (1969). Mercury in soil-gas and air—A potential tool in mineral exploration. U.S. Geol. Surv. Cir. 609, p. 16.

    Google Scholar 

  • McCarthy, J.H. Jr. (1972). Mercury vapour and other volatile components in the air as guide to ore deposits. Jour. Geochem. Expl., 1: 143-162.

    Article  Google Scholar 

  • McNerney, J.J. and Buseek, P.R. (1973). Geochemical exploration using mercury vapour. Econ. Geol., 68: 1313-1320.

    Article  Google Scholar 

  • Ohmoto, H. (1986). Stable isotope geochemistry of ore deposits. In: Stable Isotopes in high temperature geologic processes. John W. Valley, Hugh P. Taylor, Jr and James R. O’Neil (Eds). Review in Mineralogy, Vol. 16, Min. Soc. Amer. Washington, D.C., pp. 491-559.

    Google Scholar 

  • Ohmoto, H. and Rai, R.O. (1979). Isotopes of sulphur and carbon. In: Geochemistry of Hydrothermal Ore Deposits, 2nd edition. H.L. Barnes (Ed.). John Wiley & Sons. New York, pp. 509-567.

    Google Scholar 

  • Ozerova, N.A. (1962). Primary dispersion haloes of mercury. Proc. Inst. Geol. Ore Deposits; Petrogr. Mineralog. and Geochem. No. 72, Questions of geochemistry, Part 4. Nauka Press, Moscow. (Transl. Internat. Geol. Rev. 1970).

    Google Scholar 

  • Podder, B.C. (1972). Base metal mineralisation in the Rajpura belt, Udaipur district, Rajasthan. Record Geol. Surv. India, 104 (Pt. 1): 16-19.

    Google Scholar 

  • Poddar, B.C. (1974). Evaluation of sedimentary sulphide rhythmites into metamorphic tectonites in the base-metal deposit of Rajpura, Rajasthan. Geological Mining and Metallurgical Society of India, Golden Jubilee Volume: 207-222.

    Google Scholar 

  • Poddar, B.C. and Chatterjee, A.K. (1966). An interim report on the Dariba-Rajpura belt, Udaipur Dist. Rajasthan. Unpublished Report, Geol. Surv. Ind.

    Google Scholar 

  • Poddar, B.C. and Mathur, R.K. (1963). A preliminary note on the Dariba-Rajpura belt, Udaipur dist., Rajasthan. Unpublished Report. G.S.I.

    Google Scholar 

  • Raja Rao, C.S. and Chatterjee, A.K. (1972). Dariba-Rajpura-Bethumi Belt of zinc-lead mineralisation, Udaipur District, Rajasthan. Geological Survey of India, Miscellaneous Publication 16: 617-626.

    Google Scholar 

  • Raja Rao, C.S., Mathur, R.K., Dhara, M.K. and Poddar, B.C. (1970). Report on the exploration for zinc-lead at Rajpura-Dariba Prospect, Udaipur District, Rajasthan. Unpublished Report, G.S.I.

    Google Scholar 

  • Ravindran, K.V. (1982). The final report on exploration for base metal in the Aladahalli Schist Belt, Hassan district, Karnataka. Unpublished G.S.I. Report.

    Google Scholar 

  • Rouse, C.E. and Stevens, D.E. (1971). The use of the sulphur dioxide geochemistry in the detection of sulphide deposits. Assoc. Met. Inst. Min. Eng.

    Google Scholar 

  • Roy Chowdhury, M.K., Das Gupta, S.P., Prasad Rao, G.H.S.V., Venkatesh, V., Ramaiengar, A.S. and Natarajan, W.K. (1968). Geologic potential of the Khetri Copper Belt, Rajasthan. Misc. Publ. G.S.I. No. 13: 165-182.

    Google Scholar 

  • Saukov, A.A. (1946). Geochemistry of Mercury. Akad. Nauk. SSSR, Inst. Geol.

    Google Scholar 

  • Shipulin, F.K. et al. (1973). Some aspects of the problem of geochemical methods of prospecting for concealed mineralization. Geochem. Explor., 2: 193-225.

    Article  Google Scholar 

  • Talapatra, A.K. (1979). Gossan geochemistry as a guide to exploration in parts of Rajasthan, Western India. Proc. 7th Int. Geochem. Expl. Symp., pp. 173-184.

    Google Scholar 

  • Talapatra, A.K. (1994). Recent trend in base metal exploration of concealed deposits with reference to Indian subcontinent. Bhu-Vidya Golden Jubilee Volume, 52-59.

    Google Scholar 

  • Talapatra, A.K. and Bose, B.B. (1979). Mercurometric survey technique for exploration of concealed base metal sulphide mineralisation in parts of Rajasthan. Ind. Jour. of Earth Sciences, 6(2): 162-174.

    Google Scholar 

  • Talapatra, A.K., Bose, S.S. and Venkagi, K. (1981). Sulphur dioxide soil gas sampling for exploration of concealed sulphide mineralisation under sandy overburden. Ind. Minerals, 35: 30-32.

    Google Scholar 

  • Talukdar, R.C., Talapatra, A.K. and De, P.K. (1985). Application of field electrochemical technique for base metal exploration. Proc. 72nd Ind. Sci. Cong. Assoc. (Abstract Volume), part III: 73-74.

    Google Scholar 

  • Talapatra, A.K., Talukdar, R.C. and De, P.K. (1986b). Electro-chemical technique for exploration of base metal sulphides. Jour. Geochem. Expl., 25: 389-396.

    Google Scholar 

  • Ure, A.M. (1975). The determination of mercury by nonflame atomic absorption and fluorescence spectrometry – A review. Anal. Chim. Acta., 76: 1-26.

    Article  Google Scholar 

  • Ure, A.M. and Shand, C.A. (1974). The determination of mercury in soils and related materials by cold atomic absorption spectrometry. Anal. Chim. Acta., 72: 63-77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talapatra, A.K. (2020). NON-CONVENTIONAL TECHNIQUES FOR CONCEALED DEPOSITS. In: Geochemical Exploration and Modelling of Concealed Mineral Deposits. Springer, Cham. https://doi.org/10.1007/978-3-030-48756-0_5

Download citation

Publish with us

Policies and ethics