Skip to main content

Piecewise Polynomial Approximation of Probability Density Functions with Application to Uncertainty Quantification for Stochastic PDEs

  • Chapter
  • First Online:
Quantification of Uncertainty: Improving Efficiency and Technology

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137 ))

  • 502 Accesses

Abstract

The probability density function (PDF) associated with a given set of samples is approximated by a piecewise-linear polynomial constructed with respect to a binning of the sample space. The kernel functions are a compactly supported basis for the space of such polynomials, i.e. finite element hat functions, that are centered at the bin nodes rather than at the samples, as is the case for the standard kernel density estimation approach. This feature naturally provides an approximation that is scalable with respect to the sample size. On the other hand, unlike other strategies that use a finite element approach, the proposed approximation does not require the solution of a linear system. In addition, a simple rule that relates the bin size to the sample size eliminates the need for bandwidth selection procedures. The proposed density estimator has unitary integral, does not require a constraint to enforce positivity, and is consistent. The proposed approach is validated through numerical examples in which samples are drawn from known PDFs. The approach is also used to determine approximations of (unknown) PDFs associated with outputs of interest that depend on the solution of a stochastic partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the partial differential equation (PDE) setting, what we refer to as bins are often referred to as grid cells or finite elements or finite volumes. We instead refer to the subdomains \(\{{\mathcal B}_{\ell }\}_{{\ell }=1}^{N_{bins}}\) as bins because that is the notation in common use for histograms which we use to compare to our approach. Furthermore, in Sect. 4, we also use finite element grids for spatial discretization of partial differential equations, so that using the notation “bins” for parameter domain subdivisions helps us differentiate between subdivisions of parameter and spatial domains. For the same reason, we use δ instead of h to parametrize parameter bin sizes because h is in common use to parametrize spatial grid sizes.

References

  1. Andronova, N.G., Schlesinger, M.E.: Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res. Atmos. 106(D19), 22605–22611 (2001)

    Article  Google Scholar 

  2. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Botev, Z.I., Kroese, D.P.: The generalized cross entropy method, with applications to probability density estimation. Methodol. Comput. Appl. Probab. 13(1), 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Botev, Z.I., Grotowski, J.F., Kroese, D.P., et al.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  8. Capodaglio, G., Aulisa, E.: A particle tracking algorithm for parallel finite element applications. Comput. Fluids 159, 338–355 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Capodaglio, G., Gunzburger, M., Wynn, H.P.: Approximation of probability density functions for SPDEs using truncated series expansions (2018). Preprint. arXiv:1810.01028

    Google Scholar 

  10. Ciarlet, P.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  11. Criminisi, A., Shotton, J., Konukoglu, E., et al.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7(2–3), 81–227 (2012)

    MATH  Google Scholar 

  12. Fan, J., Marron, J.S.: Fast implementations of nonparametric curve estimators. J. Comput. Graph. Stat. 3(1), 35–56 (1994)

    Google Scholar 

  13. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2–5), 205–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerber, M.S.: Predicting crime using twitter and kernel density estimation. Decis. Support. Syst. 61, 115–125 (2014)

    Article  Google Scholar 

  15. Ghanem, R.G., Spanos, P.D.: Stochastic finite element method: response statistics. In: Stochastic Finite Elements: A Spectral Approach, pp. 101–119. Springer, Berlin (1991)

    Google Scholar 

  16. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numerica 23, 521–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hall, P., Wand, M.P.: On the accuracy of binned kernel density estimators. J. Multivar. Anal. 56(2), 165–184 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hegland, M., Hooker, G., Roberts, S.: Finite element thin plate splines in density estimation. ANZIAM J. 42, 712–734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heidenreich, N.-B., Schindler, A., Sperlich, S.: Bandwidth selection for kernel density estimation: a review of fully automatic selectors. AStA Adv. Stat. Anal. 97(4), 403–433 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Izenman, A.J.: Review papers: recent developments in nonparametric density estimation. J. Am. Stat. Assoc. 86(413), 205–224 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Li, C.F., Feng, Y.T., Owen, D.R.J., Li, D.F., Davis, I.M.: A Fourier–Karhunen–Loève discretization scheme for stationary random material properties in SFEM. Int. J. Numer. Methods Eng. 73(13), 1942–1965 (2008)

    Article  MATH  Google Scholar 

  22. Lopez-Novoa, U., Sáenz, J., Mendiburu, A., Miguel-Alonso, J., Errasti, I., Esnaola, G., Ezcurra, A., Ibarra-Berastegi, G.: Multi-objective environmental model evaluation by means of multidimensional kernel density estimators: Efficient and multi-core implementations. Environ. Model. Softw. 63, 123–136 (2015)

    Article  Google Scholar 

  23. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peherstorfer, B., Pflüge, D., Bungartz, H.-J.: Density estimation with adaptive sparse grids for large data sets. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 443–451. SIAM, Philadelphia (2014)

    Google Scholar 

  26. Schevenels, M., Lombaert, G., Degrande, G.: Application of the stochastic finite element method for Gaussian and non-Gaussian systems. In: ISMA2004 International Conference on Noise and Vibration Engineering, pp. 3299–3314 (2004)

    Google Scholar 

  27. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Routledge, Abingdon (2018)

    Book  Google Scholar 

  28. Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. In: CORE and Institut de Statistique. Citeseer (1993)

    Google Scholar 

  29. Xie, Z., Yan, J.: Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban. Syst. 32(5), 396–406 (2008)

    Article  Google Scholar 

  30. Xu, X., Yan, Z., Xu, S.: Estimating wind speed probability distribution by diffusion-based kernel density method. Electr. Power Syst. Res. 121, 28–37 (2015)

    Article  Google Scholar 

  31. Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US Air Force Office of Scientific Research grant FA9550-15-1-0001 and by the Sandia National Laboratories contract 1985151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gunzburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Technology & Engineering Solutions of Sandia, and The Editor(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capodaglio, G., Gunzburger, M. (2020). Piecewise Polynomial Approximation of Probability Density Functions with Application to Uncertainty Quantification for Stochastic PDEs. In: D'Elia, M., Gunzburger, M., Rozza, G. (eds) Quantification of Uncertainty: Improving Efficiency and Technology. Lecture Notes in Computational Science and Engineering, vol 137 . Springer, Cham. https://doi.org/10.1007/978-3-030-48721-8_5

Download citation

Publish with us

Policies and ethics