Skip to main content

Surrogate-Based Ensemble Grouping Strategies for Embedded Sampling-Based Uncertainty Quantification

  • Chapter
  • First Online:
Quantification of Uncertainty: Improving Efficiency and Technology

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137 ))

  • 467 Accesses

Abstract

The embedded ensemble propagation approach introduced in Phipps et al. (SIAM J. Sci. Comput. 39(2):C162, 2017) has been demonstrated to be a powerful means of reducing the computational cost of sampling-based uncertainty quantification methods, particularly on emerging computational architectures. A substantial challenge with this method however is ensemble-divergence, whereby different samples within an ensemble choose different code paths. This can reduce the effectiveness of the method and increase computational cost. Therefore grouping samples together to minimize this divergence is paramount in making the method effective for challenging computational simulations. In this work, a new grouping approach based on a surrogate for computational cost built up during the uncertainty propagation is developed and applied to model advection-diffusion problems where computational cost is driven by the number of (preconditioned) linear solver iterations. The approach is developed within the context of locally adaptive stochastic collocation methods, where a surrogate for the number of linear solver iterations, generated from previous levels of the adaptive grid generation, is used to predict iterations for subsequent samples, and group them based on similar numbers of iterations. The effectiveness of the method is demonstrated by applying it to highly anisotropic advection-dominated diffusion problems with a wide variation in solver iterations from sample to sample. It extends the parameter-based grouping approach developed in D’Elia et al. (SIAM/ASA J. Uncertain. Quantif. 6:87, 2017) to more general problems without requiring detailed knowledge of how the uncertain parameters affect the simulation’s cost, and is also less intrusive to the simulation code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here, Ω is a set of realizations, \(\mathscr {F}\) is a σ-algebra of events and \(\mathbb {P}:\mathscr {F}\rightarrow [0,1]\) is a probability measure.

  2. 2.

    For details regarding the functional spaces and the well-posedness of problem (1) we refer to [33].

  3. 3.

    Note that here we allow the forcing term f to be sample dependent.

  4. 4.

    Note that at each level, the number of samples is not usually evenly divisible by the ensemble size. To use a uniform ensemble size for all ensembles, samples are added by replicating the last sample in the last ensemble. This results in larger R values when the number of samples is small and the ensemble size is large, as can be seen in the results for R 1.

  5. 5.

    Note that we do not include timing results in Table 4 since the ensemble implementation is currently not optimized for GMRES. A significant cost within GMRES is the orthogonalization of each new Krylov vector against the previous set of vectors, which in Trilinos is implemented through GEMV dense matrix-vector product BLAS routine. An optimized implementation of this routine for ensembles is currently being developed.

References

  1. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bäck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Spectral and High Order Methods for Partial Differential Equations, pp. 43–62. Springer, Berlin (2011)

    Google Scholar 

  4. Baker, C.G., Heroux, M.A.: Tpetra, and the use of generic programming in scientific computing. Sci. Program. 20(2), 115–128 (2012)

    Google Scholar 

  5. Bakr, M.H., Bandler, J.W., Madsen, K., Rayas-Sanchez, J.E., Søndergaard, J.: Space-mapping optimization of microwave circuits exploiting surrogate models. IEEE Trans. Microwave Theory Tech. 48(12), 2297–2306 (2000)

    Google Scholar 

  6. Bandler, J.W., Cheng, Q., Gebre-Mariam, D.H., Madsen, K., Pedersen, F., Sondergaard, J.: Em-based surrogate modeling and design exploiting implicit, frequency and output space mappings. In: Microwave Symposium Digest, 2003 IEEE MTT-S International, vol. 2, pp. 1003–1006. IEEE, Piscataway (2003)

    Google Scholar 

  7. Barth, A., Lang, A.: Multilevel Monte Carlo method with applications to stochastic partial differential equations. Int. J. Comput. Math. 89(18), 2479–2498 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Barth, A., Lang, A., Schwab, C.: Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Numer. Math. 53(1), 3–27 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Bavier, E., Hoemmen, M., Rajamanickam, S., Thornquist, H.: Amesos2 and Belos: direct and iterative solvers for large sparse linear systems. Sci. Program. 20(3), 241–255 (2012)

    Google Scholar 

  11. Bichon, B.J., McFarland, J.M., Mahadevan, S.: Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliab. Eng. Syst. Saf. 96(10), 1386–1395 (2011)

    Google Scholar 

  12. Breitkopf, P., Coelho, R.F.: Multidisciplinary Design Optimization in Computational Mechanics. Wiley, Hoboken (2013)

    Google Scholar 

  13. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13(1), 147–269 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. 9(01), 11–47 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Int. J. RF Microwave Comput. Aided Eng. 20(5), 492–501 (2010)

    Google Scholar 

  17. D’Elia, M., Edwards, H.C., Hu, J., Phipps, E., Rajamanickam, S.: Ensemble grouping strategies for embedded stochastic collocation methods applied to anisotropic diffusion problems. SIAM/ASA J. Uncertain. Quantif. 6, 87 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Donea, J., Huera, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)

    Google Scholar 

  19. Doostan, A., Owhadi. H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Google Scholar 

  20. Ebeida, M.S., Mitchell, S.A., Swiler, L.P., Romero, V.J., Rushdi, A.A.: POF-darts: geometric adaptive sampling for probability of failure. Reliab. Eng. Syst. Saf. 155, 64–77 (2016)

    Google Scholar 

  21. Edwards, H.C., Sunderland, D., Porter, V., Amsler, C., Mish, S.: Manycore performance-portability: Kokkos multidimensional array library. Sci. Program. 20(2), 89–114 (2012)

    Google Scholar 

  22. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74, 3202–3216 (2014)

    Google Scholar 

  23. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research. Springer, New York (1996)

    Google Scholar 

  24. Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 462, 2177–2204 (2006). The Royal Society

    Google Scholar 

  25. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2), 205–228 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Galindo, D., Jantsch, P., Webster, C.G., Zhang, G.: Accelerating stochastic collocation methods for PDEs with random input data. Technical Report TM–2015/219, Oak Ridge National Laboratory (2015)

    Google Scholar 

  27. Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225(1), 652–685 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Ghanem, R.G., Spanos, P.D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57, 197 (1990)

    MATH  Google Scholar 

  29. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    MATH  Google Scholar 

  30. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Griebel, M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2), 151–179 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Gunzburger, M., Webster, C.G., Zhang, G.: An adaptive wavelet stochastic collocation method for irregular solutions of partial differential equations with random input data. In: Sparse Grids and Applications – Munich 2012, pp. 137–170. Springer International Publishing, Cham (2014)

    Google Scholar 

  33. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Hao, P., Wang, B., Li, G.: Surrogate-based optimum design for stiffened shells with adaptive sampling. AIAA J. 50(11), 2389–2407 (2012)

    Google Scholar 

  35. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81, 23–69 (2003)

    Google Scholar 

  36. Heroux, M.A., Willenbring, J.M.: A new overview of the Trilinos project. Sci. Program. 20(2), 83–88 (2012)

    Google Scholar 

  37. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A.B., Stanley, K.S.: An overview of the Trilinos package. ACM Trans. Math. Softw. 31(3), 397 (2005)

    MATH  Google Scholar 

  38. Li, J., Xiu, D.: Evaluation of failure probability via surrogate models. J. Comput. Phys. 229(23), 8966–8980 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Li, J., Li, J., Xiu, D.: An efficient surrogate-based method for computing rare failure probability. J. Comput. Phys. 230(24), 8683–8697 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Loève, M.: Probability Theory I. Graduate Texts in Mathematics, 4th edn., vol. 45. Springer, New York (1977)

    Google Scholar 

  41. Loève, M.: Probability Theory II. Graduate Texts in Mathematics, 4th edn., vol. 46. Springer, New York (1978)

    Google Scholar 

  42. Mathelin, L., Gallivan, K.A.: A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(04), 919–954 (2012)

    MathSciNet  MATH  Google Scholar 

  43. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  44. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    MATH  Google Scholar 

  45. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc 84(6), 957–1041 (1978)

    MathSciNet  MATH  Google Scholar 

  46. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Pawlowski, R.P., Phipps, E.T., Salinger, A.G.: Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part I: Template-based generic programming. Sci. Program. 20, 197–219 (2012)

    Google Scholar 

  49. Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Owen, S.J., Siefert, C.M., Staten, M.L.: Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part II: application to partial differential equations. Sci. Program. 20, 327–345 (2012)

    Google Scholar 

  50. Phipps, E.T.: Stokhos Stochastic Galerkin Uncertainty Quantification Methods (2015). Available online: http://trilinos.org/packages/stokhos/

  51. Phipps, E., D’Elia, M., Edwards, H.C., Hoemmen, M., Hu, J., Rajamanickam, S.: Embedded ensemble propagation for improving performance, portability and scalability of uncertainty quantification on emerging computational architectures. SIAM J. Sci. Comput. 39(2), C162 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Prokopenko, A., Hu, J.J., Wiesner, T.A., Siefert, C.M., Tuminaro, R.S.: MueLu user’s guide 1.0. Technical Report SAND2014-18874, Sandia National Laboratories (2014)

    Google Scholar 

  53. Razavi, S., Tolson, B.A., Burn, D.H.: Review of surrogate modeling in water resources. Water Resour. Res. 48(7), 7401 (2012)

    Google Scholar 

  54. Rikards, R., Abramovich, H., Auzins, J., Korjakins, A., Ozolinsh, O., Kalnins, K., Green, T.: Surrogate models for optimum design of stiffened composite shells. Compos. Struct. 63(2), 243–251 (2004)

    Google Scholar 

  55. Roman, L.J., Sarkis, M.: Stochastic Galerkin method for elliptic SPDEs: a white noise approach. Discrete Contin. Dynam. Syst. B 6(4), 941 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    MATH  Google Scholar 

  57. Stoyanov, M.: Hierarchy-direction selective approach for locally adaptive sparse grids. Technical Report TM–2013/384, Oak Ridge National Laboratory (2013)

    Google Scholar 

  58. Stoyanov, M., Webster, C.G.: A dynamically adaptive sparse grid method for quasi-optimal interpolation of multidimensional analytic functions. Technical Report TM–2015/341, Oak Ridge National Laboratory (2015)

    Google Scholar 

  59. Xiu, D.B., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    MathSciNet  MATH  Google Scholar 

  60. Xiu, D.B., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, and Office of Advanced Scientific Computing Research (ASCR), as well as the National Nuclear Security Administration, Advanced Technology Development and Mitigation program. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility.

The authors would like to thank Dr. Miro Stoyanov for useful conversations and for providing great support with TASMANIAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D’Elia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Technology & Engineering Solutions of Sandia, and E. Phipps, A. Rushdi, and M. S. Ebeida, under exclusive license to SIP AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Elia, M., Phipps, E., Rushdi, A., Ebeida, M.S. (2020). Surrogate-Based Ensemble Grouping Strategies for Embedded Sampling-Based Uncertainty Quantification. In: D'Elia, M., Gunzburger, M., Rozza, G. (eds) Quantification of Uncertainty: Improving Efficiency and Technology. Lecture Notes in Computational Science and Engineering, vol 137 . Springer, Cham. https://doi.org/10.1007/978-3-030-48721-8_3

Download citation

Publish with us

Policies and ethics