Skip to main content

Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 137 )

Abstract

In this work, Uncertainty Quantification (UQ) based on non-intrusive Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow past an airfoil with parameterized angle of attack and inflow velocity. To limit the computational cost associated with each of the simulations required by the non-intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results is presented to characterize the accuracy of the POD-Galerkin ROM developed approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A further analysis is then presented to assess how the UQ results are affected by substituting the FOM predictions with the surrogate ROM ones.

Keywords

  • Uncertainty quantification
  • Non-intrusive polynomial chaos expansion
  • Reduced order model
  • Proper orthogonal decomposition
  • Computational fluid dynamics
  • Navier-Stokes equations

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-48721-8_10
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-48721-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Abbott, I.: Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications, Mineola (1999)

    Google Scholar 

  2. Akhtar, I., Nayfeh, A.H., Ribbens, C.J.: On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comput. Fluid Dyn. 23(3), 213–237 (2009). https://doi.org/10.1007/s00162-009-0112-y

    MATH  CrossRef  Google Scholar 

  3. Baiges, J., Codina, R., Idelsohn, S.: Reduced-order modelling strategies for the finite element approximation of the incompressible Navier-Stokes equations. Comput. Methods Appl. Sci. 33, 189–216 (2014). https://doi.org/10.1007/978-3-319-06136-8_9

    MathSciNet  CrossRef  Google Scholar 

  4. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2014). https://doi.org/10.1002/nme.4772

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Barth, T., Ohlberger, M.: Finite Volume Methods: Foundation and Analysis. Wiley, Hoboken (2004). https://doi.org/10.1002/0470091355.ecm010

  6. Bergmann, M., Bruneau, C.H., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516–538 (2009). https://doi.org/10.1016/j.jcp.2008.09.024

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Burkardt, J., Gunzburger, M., Lee, H.C.: POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Eng. 196(1–3), 337–355 (2006). https://doi.org/10.1016/j.cma.2006.04.004

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Carlberg, K., Choi, Y., Sargsyan, S.: Conservative model reduction for finite-volume models. J. Comput. Phys. 371, 280–314 (2018). https://doi.org/10.1016/j.jcp.2018.05.019

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. Chen, P., Quarteroni, A., Rozza, G.: Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59(1), 187–216 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Chen, P., Quarteroni, A., Rozza, G.: Reduced basis methods for uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 5(1), 813–869 (2017)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Chinesta, F., Huerta, A., Rozza, G., Willcox, K.: Model reduction methods. Encyclopedia of Computational Mechanics Second Edition, pp. 1–36 (2017)

    Google Scholar 

  12. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012). https://doi.org/10.1137/10081157X

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Courier Corporation, North Chelmsford (2003)

    MATH  Google Scholar 

  14. Gunzburger, M.D., Peterson, J.S., Shadid, J.N.: Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Eng. 196(4), 1030–1047 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Model. Numer. Anal. 42(2), 277–302 (2008). https://doi.org/10.1051/m2an:2008001

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Haasdonk, B., Ohlberger, M., Rozza, G.: A reduced basis method for evolution schemes with parameter-dependent explicit operators. ETNA Electron. Trans. Numer. Anal. 32, 145–161 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-22470-1

  18. Hijazi, S., Ali, S., Stabile, G., Ballarin, F., Rozza, G.: The effort of increasing Reynolds number in projection-based reduced order methods: from laminar to turbulent flows. In: Lecture Notes in Computational Science and Engineering, Springer International Publishing, pp. 245–264 (2020). https://doi.org/10.1007/978-3-030-30705-9_22

  19. Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD–Galerkin reduced order model for turbulent flows. J. Comput. Phys. 416, 109513 (2020)

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. Hosder, S., Walters, R., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 891 (2006)

    Google Scholar 

  21. Isukapalli, S.S.: Uncertainty analysis of transport-transformation models. Unpublished Ph.D. Disseration, New Brunswick, NJ: Rutgers, The State University of New Jersey, Department of Chemical and Biochemical Engineering (1999)

    Google Scholar 

  22. Janya-Anurak, C.: Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems Using Bayesian Uncertainty Quantification Based on Generalized Polynomial Chaos, vol. 31. KIT Scientific Publishing, Karlsruhe (2017)

    Google Scholar 

  23. Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. Thesis, Imperial College, University of London (1996). http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/docs/HrvojeJasakPhD.pdf

  24. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). https://doi.org/10.1137/S0036142900382612

    MathSciNet  MATH  CrossRef  Google Scholar 

  25. Loeve, M.: Probability Theory vol. II (Graduate Texts in Mathematics). Springer, Berlin (1994)

    Google Scholar 

  26. Lorenzi, S., Cammi, A., Luzzi, L., Rozza, G.: POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations. Comput. Methods Appl. Mech. Eng. 311, 151–179 (2016). http://dx.doi.org/10.1016/j.cma.2016.08.006

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab, 1st edn. Springer, Berlin (2015)

    MATH  Google Scholar 

  28. Noack, B.R., Eckelmann, H.: A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6(1), 124–143 (1994). https://doi.org/10.1063/1.868433

    MATH  CrossRef  Google Scholar 

  29. Patankar, S., Spalding, D.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15(10), 1787–1806 (1972). http://dx.doi.org/10.1016/0017-9310(72)90054-3

    MATH  CrossRef  Google Scholar 

  30. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-15431-2

  31. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. 23(4), 923–948 (2007). https://doi.org/10.1002/num.20249

    MathSciNet  MATH  CrossRef  Google Scholar 

  32. Reagana, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132(3), 545–555 (2003)

    CrossRef  Google Scholar 

  33. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007). https://doi.org/10.1016/j.cma.2006.09.005

    MathSciNet  MATH  CrossRef  Google Scholar 

  34. Sarkar, S., Witteveen, J., Loeven, A., Bijl, H.: Effect of uncertainty on the bifurcation behavior of pitching airfoil stall flutter. J. Fluids Struct. 25(2), 304–320 (2009). https://doi.org/10.1016/j.jfluidstructs.2008.06.006

    CrossRef  Google Scholar 

  35. Stabile, G., Hijazi, S., Mola, A., Lorenzi, S., Rozza, G.: POD-Galerkin reduced order methods for CFD using finite volume discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 8(1), (2017). https://doi.org/10.1515/caim-2017-0011

  36. Stabile, G., Rozza, G.: Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Comput. Fluids 173, 273–284 (2018). https://doi.org/10.1016/j.compfluid.2018.01.035

    MathSciNet  MATH  CrossRef  Google Scholar 

  37. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29(2), 143–151 (1987). https://doi.org/10.1080/00401706.1987.10488205

    MathSciNet  MATH  CrossRef  Google Scholar 

  38. Tezzele, M., Demo, N., Mola, A., Rozza, G.: An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics. Submitted, Special Issue ECMI (2018)

    Google Scholar 

  39. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman, London (1995)

    Google Scholar 

  40. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    CrossRef  Google Scholar 

  41. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by the European Research Council Consolidator Grant project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics—GA 681447, H2020-ERC COG 2015 AROMA-CFD (PI: Prof. G. Rozza), MIUR (Italian Ministry of Education, Universities and Research) FARE-X-AROMA-CFD and INdAM-GNCS projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 National Technology & Engineering Solutions of Sandia, and The Editor(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hijazi, S., Stabile, G., Mola, A., Rozza, G. (2020). Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives. In: D'Elia, M., Gunzburger, M., Rozza, G. (eds) Quantification of Uncertainty: Improving Efficiency and Technology. Lecture Notes in Computational Science and Engineering, vol 137 . Springer, Cham. https://doi.org/10.1007/978-3-030-48721-8_10

Download citation