Skip to main content

Molecular Structure in Electronic Strong Coupling

  • Chapter
  • First Online:
Polaritonic Chemistry

Part of the book series: Springer Theses ((Springer Theses))

  • 389 Accesses

Abstract

As introduced in Sect. 1.3, organic molecules were initially used in order to achieve robust room-temperature strong coupling, and were merely seen as another method to manipulate light. However, their complex internal structure soon became apparent in many experiments where nuclear degrees of freedom played a relevant role. The necessity of a theory of strong coupling that included the rovibrational structure was undeniable. Such a theory implies having a nucleus–electron–photon coupled system, in which three different timescales play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to nuclear symmetry, the only contribution to the total dipole moment operator is electronic. Including an asymmetry in our model makes the nuclear contribution to the dipole non-zero and thus \(\hat{\mu }=\hat{x} + \hat{R}\). This would add a non-zero permanent dipole to the molecule, which could introduce small energy contributions to the PES. We note that this does not change the qualitative analysis of this chapter, and that we include a discussion of its effects on the ground state in Sect. 6.6.

  2. 2.

    We note that this is only true because we do not have permanent dipole moments in our model, which couple states of the form \(|k,k,0\rangle \) and \(|k,k,1\rangle \).

References

  1. Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Annalen der Physik 389:457

    Article  ADS  Google Scholar 

  2. Tully JC (2000) Perspective on “Zur Quantentheorie der Molekeln”. Theor Chem Acc Theory Comput Model (Theoretica Chimica Acta) 103:173

    Google Scholar 

  3. Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535:127

    Article  ADS  Google Scholar 

  4. Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T (2015) Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys Rev Lett 114:157401

    Article  ADS  Google Scholar 

  5. Lidzey DG, Bradley DDC, Skolnick MS, Virgili T, Walker S, Whittaker DM (1998) Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 395:53

    Article  ADS  Google Scholar 

  6. Schwartz T, Hutchison JA, Genet C, Ebbesen TW (2011) Reversible switching of ultrastrong light-molecule coupling. Phys Rev Lett 106:196405

    Article  ADS  Google Scholar 

  7. Kéna-Cohen S, Davanço M, Forrest SR (2008) Strong exciton-photon coupling in an organic single crystal microcavity. Phys Rev Lett 101:116401

    Article  ADS  Google Scholar 

  8. Kéna-Cohen S, Maier SA, Bradley DD (2013) Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities. Adv Opt Mater 1:827

    Article  Google Scholar 

  9. Houdré R, Stanley RP, Ilegems M (1996) Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys Rev A At Mol Opt Phys 53:2711

    Article  ADS  Google Scholar 

  10. Agranovich V, Gartstein YN, Litinskaya M (2011) Hybrid resonant organic-inorganic nanostructures for optoelectronic applications. Chem Rev 111:5179

    Article  Google Scholar 

  11. Michetti P, Mazza L, La Rocca GC (2015) Strongly coupled organic microcavities. In: Zhao YS (ed) Organic nanophotonics, nano-optics and nanophotonics, vol 39. Springer, Berlin, Heidelberg

    Google Scholar 

  12. Gonzalez-Ballestero C, Feist J, Gonzalo Badía E, Moreno E, Garcia-Vidal FJ (2016) Uncoupled dark states can inherit polaritonic properties. Phys Rev Lett 117:156402

    Google Scholar 

  13. Sáez-Blázquez R, Feist J, Fernández-Domínguez A, García-Vidal F (2018) Organic polaritons enable local vibrations to drive long-range energy transfer. Phys Rev B 97:241407

    Article  ADS  Google Scholar 

  14. Hakala TK, Toppari JJ, Kuzyk A, Pettersson M, Tikkanen H, Kunttu H, Törmä P (2009) Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys Rev Lett 103:1

    Article  Google Scholar 

  15. Rodriguez SRK, Feist J, Verschuuren MA, Garcia Vidal FJ, Gómez Rivas J (2013) Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. Phys Rev Lett 111

    Google Scholar 

  16. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  17. Ciuti C, Carusotto I (2006) Input-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters. Phys Rev A At Mol Opt Phys 74

    Google Scholar 

  18. Kéna-Cohen S, Forrest SR (2010) Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photonics 4:371

    Google Scholar 

  19. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MP, Garg A, Zwerger W (1987) Dynamics of the dissipative two-state system. Rev Modern Phys 59:1

    Article  ADS  Google Scholar 

  20. Coalson RD, Evans DG, Nitzan A (1994) A nonequilibrium golden rule formula for electronic state populations in nonadiabatically coupled systems. J Chem Phys 101:436

    Article  ADS  Google Scholar 

  21. Spano FC (2015) Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates. J Chem Phys 142

    Google Scholar 

  22. Herrera F, Spano FC (2016) Cavity-controlled chemistry in molecular ensembles. Phys Rev Lett 116:238301

    Article  ADS  Google Scholar 

  23. Shimanouchi T (1972) Tables of molecular vibrational frequencies. Consolidated volume I. NSRDS-NBS 39:161p

    Google Scholar 

  24. Gray RM (1990) Entropy and information theory, 1st edn. Springer

    Google Scholar 

  25. Ribeiro RF, Martínez-Martínez LA, Du M, Campos-Gonzalez-Angulo J, Yuen-Zhou J (2018) Polariton chemistry: controlling molecular dynamics with optical cavities. Chem Sci 9:6325

    Article  Google Scholar 

  26. Pino JD, Feist J, Garcia-Vidal FJ (2015) Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J Phys 17:53040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Galego Pascual .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galego Pascual, J. (2020). Molecular Structure in Electronic Strong Coupling. In: Polaritonic Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-48698-3_3

Download citation

Publish with us

Policies and ethics