Skip to main content

Biogeography of New World Tarantulas

  • Chapter
  • First Online:
New World Tarantulas

Part of the book series: Zoological Monographs ((ZM,volume 6))

Abstract

Biogeography is a multidisciplinary field that is concerned with delimiting and explaining the geographic distributions of organisms in space and time. Due to their distribution patterns and interesting biology (e.g., ancient lineage with a nearly cosmopolitan distribution, sedentary lifestyle with limited dispersal capabilities), tarantulas are an appealing taxonomic group for addressing a variety of biogeographic questions concerning the Earth’s history. In this chapter, we discuss some biogeographic basic concepts, delve into the distribution patterns of New World tarantulas, and explore some of the historical explanations that may have led to these distributions. We mostly review and highlight the results of recent studies but also include personal observations and unpublished data. The distributions of higher-level taxonomic groups (subfamilies and tribes) are described and we detail their latitudinal and elevational limits. We also review the distributions of groups with unique insular habitats such as those found on islands surrounded by seas, forested “islands” surrounded by “seas” of deserts, and caves. Furthermore, we discuss the distribution of some unique morphological characters of taxonomic importance such as urticating setae. Finally, we review a handful of studies that have explicitly investigated the biogeography of New World tarantulas using a variety of different analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnarsson I, Van Patten C, Sargeant L, Chomitz B, Dziki A, Binford G (2018) A radiation of the ornate Caribbean ‘smiley-faced spiders’ – with descriptions of 15 new species (Araneae, Theridiidae, Spintharus). Zool J Linnean Soc 182:758–790

    Article  Google Scholar 

  • Ali JR (2012) Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis gaining a foothold? J Biogeogr 39:431–433

    Article  Google Scholar 

  • Almeida-Abreu PA, Renger FE (1998) Effects of the West-Congolian belt orogeny on the tectonic evolution of the eastern São Francisco craton during Neoproterozoic times. In: Abstracts of the 14th international conference on basement tectonics. Ouro Preto, Brazil, pp 38–40

    Google Scholar 

  • Amorim DS, Pires MRS (1996) Neotropical biogeography and a method for maximum biodiversity estimation. In: Bicudo CEM, Menezes MA (eds) Biodiversity in Brazil. A first approach. Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sao Paulo, p 326

    Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartín I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A 106:9749–9754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Zizka A, Silvestro D, Scharn R, Cascales-Miñana B, Bacon CD (2015) An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front Genet 6:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraespecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Evol Syst 18:489–522

    Article  Google Scholar 

  • Ayoub NA, Garb JE, Hedin M, Hayashi CY (2007) Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Mol Phylogenet Evol 42:394–409

    Article  CAS  PubMed  Google Scholar 

  • Bell J, Bohan D, Shaw E, Weyman G (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114

    Article  CAS  PubMed  Google Scholar 

  • Bertani R (2001) Revision, cladistics analysis, and zoogeography of Vitalius, Nhandu and Proshapalopus; with notes on other theraphosine genera (Araneae: Theraphosidae). Arq Zool 36:265–356

    Google Scholar 

  • Bertani R (2012) Revision, cladistic analysis and biogeography of Typhochlaena C. L. Koch, 1850, Pachistopelma Pocock, 1901 and Iridopelma Pocock, 1901 (Araneae, Theraphosidae, Aviculariinae). Zookeys 230:1–94

    Article  Google Scholar 

  • Bertani R (2013) A new species of Melloina (Araneae: Paratropididae) from Venezuela. Fortschr Zool 30:101–106

    Google Scholar 

  • Bertani R, da Silva PI (2002) The first mygalomorph spider without spermathecae: Sickius longibulbi, with a revalidation of Sickius (Araneae, Theraphosidae, Ischnocolinae). J Arachnol 30:519–526

    Article  Google Scholar 

  • Bertani R, Fukushima CS (2009) Description of two new species of Avicularia Lamarck, 1818 and redescription of Avicularia diversipes (C. L. Koch, 1842) (Araneae, Theraphosidae, Aviculariinae)— three possibly threatened Brazilian species. Zootaxa 2223:25–47

    Article  Google Scholar 

  • Bertani R, Guadanucci JPL (2013) Morphology, evolution and usage of urticating setae by tarantulas (Araneae: Theraphosidae). Fortschr Zool 30:403–418

    Google Scholar 

  • Bloom T, Binford G, Esposito LA, Alayón Garcia G, Peterson I, Nishida A, Loubet-Senear K, Agnarsson I (2014) Discovery of two new species of eyeless spiders within a single Hispaniola cave. J Arachnol 42:148–154

    Article  Google Scholar 

  • Bond JE, Hedin MC, Ramirez MG, Opell BD (2001) Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Mol Ecol 10:899–910

    Article  CAS  PubMed  Google Scholar 

  • Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 24:1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Bryson RW, Riddle BR, Graham MR, Smith BT, Prendini L (2013a) As old as the hills: Montane scorpions in southwestern North America reveal ancient associations between biotic diversification and landscape history. PLoS One 8:e52822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryson RW, Savary WE, Prendini L (2013b) Biogeography of scorpions in the Pseudouroctonus minimus complex (Vaejovidae) from south-western North America: implications of ecological specialization for pre-Quaternary diversification. J Biogeogr 40:1850–1860

    Article  Google Scholar 

  • Candia-Ramírez DT, Francke OF (2017) Taxonomic revision of the genus Crassicrus Reichling & West, 1996 (Araneae: Theraphosidae: Theraphosinae), with the description of additional keels on the embolus. J Arachnol 45:67–98

    Article  Google Scholar 

  • Cardoso FC, Dekan Z, Rosengren KJ, Erickson A, Vetter I, Deuis JR, Herzig V, Alewood PF, King GF, Lewis RJ (2015) Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol Pharmacol 88:291–303

    Article  CAS  PubMed  Google Scholar 

  • Carnaval AC, Mortiz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Casazza G, Minuto L (2009) A critical evaluation of different methods for the determination of areas of endemism and biotic elements: an Alpine study. J Biogeogr 36:2056–2065

    Article  Google Scholar 

  • Chamberland L, McHugh A, Kechejian S, Binford GJ, Bond JE, Coddington J, Dolman CA, Hamilton CA, Harvey MS, Kuntner M, Agnarsson I (2018) From Gondwana to GAARlandia: evolutionary history and biogeography of ogre-faced spiders (Deinopis). J Biogeogr 45:2442–2457

    Article  Google Scholar 

  • Chávez Hoffmeister MF (2016) El origen de la fauna Sudamericana moderna: de Gondwana al Gran Intercambio Americano. En: Pino M. El Sitio Pilauco Osorno, Patagonia Noroccidental de Chile. Universidad Austral de Chile, pp 47–74

    Google Scholar 

  • Christiansen KA (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:76–78

    Google Scholar 

  • Christman MC, Culver DC, Madden MK, White D (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452

    Article  Google Scholar 

  • Coates AG, Stallard RF (2013) How old is the Isthmus of Panama? Bull Mar Sci 89(4):801–813

    Article  Google Scholar 

  • Cooper SJB, Harvey MS, Saint KM, Main BY (2011) Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia. Mol Ecol 20:3219–3236

    Article  PubMed  Google Scholar 

  • Coyle FA (1971) Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae). Bull Mus Comp Zool 141:269–402

    Google Scholar 

  • Coyle FA, Greenstone MH, Hultsch AL, Morgan CE (1985) Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araneae: Atypidae, Ctenizidae). J Arachnol 13:291–296

    Google Scholar 

  • Crisci JV (2001) The voice of historical biogeography. J Biogeogr 28:157–168

    Article  Google Scholar 

  • Crisci JV, Katinas L, Posadas P (2003) Historical biogeography: an introduction. Harvard University Press, Cambridge, p 262

    Google Scholar 

  • Crisci JV, Sala OE, Katinas L, Posadas P (2006) Bridging historical and ecological approaches in biogeography. Aust Syst Bot 19:1–10

    Article  Google Scholar 

  • Crother BI, Murray CM (2011) Ontology of areas of endemism. J Biogeogr 38:1009–1015

    Article  Google Scholar 

  • Cuesta F, Peralvo M, Valarezo N (2009) Los bosques montanos de los Andes tropicales: una evaluación regional de su estado de conservación y de su vulnerabilidad a efectos del cambio climático. Serie Investigación y Sistematización #5. Programa Regional ECOBONA – INTERCOOPERATION. Quito

    Google Scholar 

  • Dalla Vecchia FM, Selden PA (2013) A Triassic spider from Italy. Acta Palaeontol Pol 58:325–330

    Google Scholar 

  • DaSilva MB, Pinto-da-Rocha R (2011) História biogeográfica da Mata Atlântica: opiliões (Arachnida) como modelo para suainferência. In: De Carvalho CJB, Almeida EAB (eds) Biogeografia da América do Sul – Padrões e Processos. São Paulo, Roca, pp 221–238

    Google Scholar 

  • Donato M (2006) Historical biogeography of the family Tristiridae (Orthoptera: Acridomorpha) applying dispersal vicariance analysis. J Arid Environ 66:421–434

    Article  Google Scholar 

  • Dunlop JA, Harms D, Penney D (2008) A fossil tarantula (Araneae: Theraphosidae) from Miocene Chiapas amber, Mexico. Rev Iber Aracnol 15:9–17

    Google Scholar 

  • Edwards GB, Hibbard KL (1999) The Mexican redrump, Brachypelma vagans (Araneae: Theraphosidae), an exotic tarantula established in Florida. Florida Department of Agriculture Entomology Circular 394:1–2

    Google Scholar 

  • Escoubas P, Rash L (2004) Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon 43:555–574

    Article  CAS  PubMed  Google Scholar 

  • Eskov K, Zonshtein S (1990) First Mesozoic mygalomorph spiders from the Lower Cretaceous of Siberia and Mongolia, with notes on the system and evolution of the infraorder Mygalomorphae (Chelicerata: Araneae). N Jb Geol Paläont Abh 178:325–368

    Google Scholar 

  • Fabiano-da-Silva W, Guadanucci JPL, DaSilva MB (2015) Tmesiphantes mirim sp. nov. (Araneae: Theraphosidae) from the Atlantic Forest of Bahia, Brazil, biogeographical notes and identification keys for species of the genus. Fortschr Zool 32:151–156

    Google Scholar 

  • Ferretti N (2015) On three new Euathlus tarantulas from Argentina and cladistic analysis of the genus. J Arachnol 43:313–326

    Article  Google Scholar 

  • Ferretti N, González A, Pérez-Miles F (2012) Historical biogeography of the Genus Cyriocosmus (Araneae: Theraphosidae) in the neotropics according to an event-based method and spatial analysis of vicariance. Zool Stud 51:526–535

    Google Scholar 

  • Ferretti N, Pompozzi G, Copperi S, Schwerdt L (2013) Aerial dispersal by Actinopus spiderlings. J Arachnol 41:407–408

    Article  Google Scholar 

  • Ferretti N, Cavallo P, Chaparro JC, Ríos-Tamayo D, Seimon TA, West R (2018) The Neotropical genus Hapalotremus Simon, 1903 (Araneae: Theraphosidae), with the description of seven new species and the highest altitude record for the family. J Nat Hist 52:1927–1984

    Article  Google Scholar 

  • Foley S, Lüddecke T, Chen D-Q, Krehenwinkel H, Kuenzel S, Longhorn SJ, Wendt I, von Wirth V, Taenzler R, Vences M, Piel WH (2019) Tarantula phylogenomics: a robust phylogeny of multiple tarantula lineages inferred from transcriptome data sheds light on the prickly issue of urticating setae evolution. bioRxiv 501262. doi:https://doi.org/10.1101/501262

  • Fonseca-Ferreira R, de Almeida ZR, Guadanucci JPL (2017) Diversity of iron cave-dwelling mygalomorph spiders from Pará, Brazil, with description of three new species (Araneae). Trop Zool 3:178–199

    Article  Google Scholar 

  • Fukushima CS, Bertani R (2017) Taxonomic revision and cladistic analysis of Avicularia Lamarck, 1818 (Araneae, Theraphosidae, Aviculariinae) with description of three new aviculariine genera. Zookeys 659:1–185

    Article  Google Scholar 

  • Fukushima CS, Bertani R (2018) Two new species of Guyruita Guadanucci et al., 2007 (Araneae, Theraphosidae) from Brazil. Zootaxa 4370:395–408

    Article  PubMed  Google Scholar 

  • Gans PB (1997) Large-magnitude Oligo-Miocene extension in southern Sonora: implications for the tectonic evolution of northwest Mexico. Tectonics 16:388–408

    Article  Google Scholar 

  • García-Villafuerte MA (2008) Primer registro fósil del género Hemirrhagus (Araneae, Theraphosidae) en ámbar del Terciario, Chiapas, México. Rev Iber Aracnol 16:43–47

    Google Scholar 

  • Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, Hedin M, Kocot KM, Ledford JM, Bond JE (2016) Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4:e1719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Missouri Bot Gard 69:557–593

    Article  Google Scholar 

  • Gillespie R (2002) Biogeography of spiders on remote oceanic islands of the Pacific: archipelagoes as stepping stones? J Biogeogr 29:655–662

    Article  Google Scholar 

  • Godwin RL, Opatova V, Garrison NL, Hamilton CA, Bond JE (2018) Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using Anchored Hybrid Enrichment, with a description of the family, Halonoproctidae Pocock 1901. Mol Phylogenet Evol 126:303–313

    Article  PubMed  Google Scholar 

  • Graham MR, Hendrixson BE, Hamilton CA, Bond JE (2015) Miocene extensional tectonics explain ancient patterns of diversification among turret-building tarantulas (Aphonopelma mojave group) in the Mojave and Sonoran deserts. J Biogeogr 42:1052–1065

    Article  Google Scholar 

  • Guadanucci JPL (2011) Cladistic analysis and biogeography of the genus Oligoxystre Vellard 1924 (Araneae: Mygalomorphae: Theraphosidae). J Arachnol 39:320–326

    Article  Google Scholar 

  • Guadanucci JPL (2014) Theraphosidae phylogeny: relationships of the ‘Ischnocolinae’ genera (Araneae, Mygalomorphae). Zool Scripta 43:508–518

    Article  Google Scholar 

  • Guadanucci JPL, Weinmann D (2014) The spider genera Euthycaelus Simon and Schismatothele Karsch (Mygalomorphae, Theraphosidae). Zootaxa 3795:275–288

    Article  PubMed  Google Scholar 

  • Guadanucci JPL, Weinmann D (2015) Description of Neoholothele gen. nov. (Araneae, Theraphosidae, Schismatothelinae). Stud Neotrop Fauna Environ 50:221–228

    Article  Google Scholar 

  • Guadanucci JPL, Lucas SM, Indicatti RP, Yamamoto FU (2007) Description of Guyruita gen. nov. and two new species (Ischnocolinae, Theraphosidae). Revista Brasileira de Zoologia 24:991–996

    Article  Google Scholar 

  • Guadanucci JPL, Perafán C, Valencia-Cuéllar D (2017) The genus Holothele Karsch, 1879: the identity of the type species (Mygalomorphae, Theraphosidae). Zoosystema 39:263–271

    Article  Google Scholar 

  • Halffter G (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annu Rev Entomol 32:95–114

    Article  Google Scholar 

  • Hamilton CA, Formanowicz DR, Bond JE (2011) Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS One 6(10):e26207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton CA, Hendrixson BE, Brewer MS, Bond JE (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Mol Phylogenet Evol 71:79–93

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CA, Hendrixson BE, Bond JE (2016) Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States. ZooKeys 560:1–340

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Harrison SE, Harvey MS, Cooper SJB, Austin AD, Rix MG (2017) Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 12:e0180139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedges SB, Hass CA, Maxson LR (1992) Caribbean biogeography: molecular evidence for dispersal in West Indian terrestrial vertebrates. Proc Natl Acad Sci U S A 89:1909–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedin M, Starrett J, Hayashi C (2013) Crossing the uncrossable: novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California. Mol Ecol 22:508–526

    Article  CAS  PubMed  Google Scholar 

  • Hedin H, Carlson D, Coyle F (2015) Sky island diversification meets the multispecies coalescent – divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia. Mol Ecol 24:3467–3484

    Article  PubMed  Google Scholar 

  • Hedin M, Derkarabetian S, Alfaro A, Ramírez MJ, Bond JE (2019) Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ 7:e6864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendrixson BE, Bond JE (2007) Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus). Mol Phylogenet Evol 42:738–755

    Article  CAS  PubMed  Google Scholar 

  • Hendrixson BE, DeRussy BM, Hamilton CA, Bond JE (2013) An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma). Mol Phylogenet Evol 66:327–340

    Article  PubMed  Google Scholar 

  • Hendrixson BE, Guice AV, Bond JE (2015) Integrative species delimitation and conservation of tarantulas (Araneae, Mygalomorphae, Theraphosidae) from a North American biodiversity hotspot. Insect Conserv Diver 8:120–131

    Article  Google Scholar 

  • Hernández-Camacho J, Walschburger T, Ortíz-Quijano R, Hurtado-Guerra A (1992) Origen y distribución de la biota suramericana y colombiana. In: Halffter G (ed) La Diversidad Biológica de Iberoamérica I, Acta Zoológica Mexicana (nueva serie), Volumen Especial. Xalapa, México, Instituto de Ecología, pp 55–104

    Google Scholar 

  • Hewitt G (1999) Post-glacial recolonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195

    Article  CAS  Google Scholar 

  • Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–241

    Article  Google Scholar 

  • Hüsser M (2018) A first phylogenetic analysis reveals a new arboreal tarantula genus from South America with description of a new species and two new species of Tapinauchenius Ausserer, 1871 (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 784:59–93

    Article  Google Scholar 

  • Iturralde-Vinent MA, MacPhee RDE (1999) Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bull Am Mus Nat Hist 238:1–95

    Google Scholar 

  • Johnson RA, Ward PS (2002) Biogeography and endemism of ants (Hymenoptera: Formicidae) in Baja California, Mexico: a first overview. J Biogeogr 29:1009–1026

    Article  Google Scholar 

  • Kaderka R (2015) Bistriopelma, a new genus with two new species from Peru (Araneae: Theraphosidae: Theraphosinae). Rev Peru Biol 22:275–288

    Article  Google Scholar 

  • Kambas D (2019) Tarantupedia: an online taxonomic database for the worlds largest spiders. https://www.tarantupedia.com. Last accessed 7 July 2019

  • Kuntner M, Agnarsson I (2011) Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae: Nephilengys). Mol Phylogenet Evol 59:477–488

    Article  PubMed  Google Scholar 

  • Lüddecke T, Krehenwinkel H, Canning G, Glaw F, Longhorn SJ, Tänzler R, Wendt I, Vences M (2018) Discovering the silk road: Nuclear and mitochondrial sequence data resolve the phylogenetic relationships among theraphosid spider subfamilies. Mol Phylogenet Evol 119:63–70

    Article  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of Island biogeography. Princeton University Press

    Google Scholar 

  • Main BY (1981a) Eco-evolutionary radiation of mygalomorph spiders in Australia. In: Keast A (ed) Ecological biogeography of Australia. Dr. W. Junk, The Hague, pp 853–872

    Chapter  Google Scholar 

  • Main BY (1981b) Some zoogeographic considerations of families of spiders occurring in New Guinea. In: Gressit JL (ed) Biogeography and ecology in New Guinea. Dr. W Junk, TheHague, pp 583–602

    Google Scholar 

  • Malumián N (1999) La sedimentación y el volcanismo terciarios en la Patagonia extra andina. La sedimentación en la Patagonia extra andina. In: Caminos R (ed) Geología Argentina. Anales del Instituto de Geología y Recursos Minerales, Buenos Aires, pp 557–612

    Google Scholar 

  • Marshall SD, West R (2008) An ontogenetic shift in habitat use by the Neotropical tarantula Ephebopus murinus (Araneae, Theraphosidae, Aviculariinae). Arachnology 14:280–284

    Article  Google Scholar 

  • McQuarrie N, Wernicke BP (2005) An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere 1:147–172

    Article  Google Scholar 

  • Mendoza J, Francke O (2017) Systematic revision of Brachypelma red-kneed tarantulas (Araneae: Theraphosidae), and the use of DNA barcodes to assist in the identification and conservation of CITES-listed species. Invertebr Syst 31:157–179

    Article  Google Scholar 

  • Mendoza JI, Francke OF (2018) Five new cave-dwelling species of Hemirrhagus Simon 1903 (Araneae, Theraphosidae, Theraphosinae), with notes on the generic distribution and novel morphological features. Zootaxa 4407:451–482

    Article  PubMed  Google Scholar 

  • Mendoza JI, Locht A, Kaderka R, Medina F, Pérez-Miles F (2016) A new genus of theraphosid spider from Mexico, with a particular palpal bulb structure (Araneae, Theraphosidae, Theraphosinae). Eur J Taxon 232:1–28

    Google Scholar 

  • Mendoza-Marroquín JI (2014a) Taxonomic revision of Hemirrhagus Simon, 1903 (Araneae: Theraphosidae, Theraphosinae), with description of five new species from Mexico. Zool J Linnean Soc 170:634–689

    Article  Google Scholar 

  • Mendoza-Marroquín JI (2014b) Psalmopoeus victori, the first arboreal theraphosid spider described for Mexico (Araneae: Theraphosidae: Aviculariinae). Rev Mex Biodivers 85:728–735

    Article  Google Scholar 

  • Molina-Garza RS, Geissman JW, Wawrzyniec TF, Alonso TAP, Iriondo A, Weber B, Aranda-Gómez J (2015) Geology of the coastal Chiapas (Mexico) Miocene plutons and the Tonalá shear zone: syntectonic emplacement and rapid exhumation during sinistral transpression. Lithosphere 7:257–274

    Article  Google Scholar 

  • Montes de Oca L, D'Elía G, Pérez-Miles F (2016) An integrative approach for species delimitation in the spider genus Grammostola (Theraphosidae, Mygalomorphae). Zool Scr 45(3):322–333

    Article  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Ángel LC, Rodríguez-Parra LA, Ramírez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348:226–229

    Article  CAS  PubMed  Google Scholar 

  • Morrone JJ (1994) On the identification of areas of endemism. Syst Biol 43:438–441

    Article  Google Scholar 

  • Morrone JJ (2005) Hacia una síntesis biogeográfica de México. Rev Mex Biodivers 76:207–252

    Google Scholar 

  • Morrone JJ (2011) Sistemática, biogeografía, evolución: los patrones de la biodiversidad en tiempo-espacio. Facultad de Ciencias, UNAM, Textos de Biología

    Google Scholar 

  • Morrone JJ (2014a) Parsimony analysis of endemicity (PAE) revisited. J Biogeogr 41:842–854

    Article  Google Scholar 

  • Morrone JJ (2014b) Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30:202–214

    Article  PubMed  Google Scholar 

  • Morrone JJ (2014c) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:001–110

    Article  Google Scholar 

  • Morrone JJ (2015a) Biogeographical regionalization of the world: a reappraisal. Aust Syst Bot 28:81–90

    Article  Google Scholar 

  • Morrone JJ (2015b) Track analysis beyond panbiogeography. J Biogeogr 42:413–425

    Article  Google Scholar 

  • Nihei SS (2006) Misconceptions about parsimony analysis of endemicity. J Biogeogr 33:2099–2106

    Article  Google Scholar 

  • Noguera-Urbano EA (2016) Areas of endemism: travelling through space and the unexplored dimension. Syst Biodivers 14:131–139

    Article  Google Scholar 

  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA et al (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira F, Cassola E, Marroig G (2009) Paleogeography of the South Atlantic: a route for primates and rodents into the new world? In: Garber PA et al (eds) South American primates, developments in primatology: progress and prospects. Springer, pp 55–68

    Google Scholar 

  • Opatova V, Arnedo MA (2014a) From Gondwana to Europe: inferring the origins of Mediterranean Macrothele spiders (Araneae: Hexathelidae) and the limits of the family Hexathelidae. Invertebr Syst 28:361–374

    Article  Google Scholar 

  • Opatova V, Arnedo MA (2014b) Spiders on a hot volcanic roof: colonization pathways and phylogeography of the Canary Islands endemic trap-door spider Titanidiops canariensis (Araneae, Idiopidae). PLoS One 9:e115078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opatova V, Bond JE, Arnedo MA (2013) Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Mol Phylogenet Evol 69:1135–1145

    Article  PubMed  Google Scholar 

  • Opatova V, Bond JE, Arnedo MA (2016) Uncovering the role of the Western Mediterranean tectonics in shaping the diversity and distribution of the trap-door spider genus Ummidia (Araneae, Ctenizidae). J Biogeogr 43:1955–1966

    Article  Google Scholar 

  • Opatova V, Hamilton CA, Hedin M, Montes de Oca L, Král J, Bond JE (2019) Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. bioRxiv 531756. doi:https://doi.org/10.1101/531756

  • Ortiz D, Francke OF (2016) Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae). Mol Phylogenet Evol 101:176–193

    Article  CAS  PubMed  Google Scholar 

  • Ortiz D, Francke OF (2017) Reconciling morphological and molecular systematics in tarantulas (Araneae: Theraphosidae): revision of the Mexican endemic genus Bonnetina. Zool J Linnean Soc 180:819–886

    Article  Google Scholar 

  • Ortiz D, Francke OF, Bond JE (2018) A tangle of forms and phylogeny: extensive morphological homoplasy and molecular clock heterogeneity in Bonnetina and related tarantulas. Mol Phylogenet Evol 127:55–73

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environ 66:498–532

    Article  Google Scholar 

  • Palminteri S, Powell G (eds) (2001) Visión de la biodiversidad de los Andes del norte. World Wilelife Fund - WWF, Santiago de Cali

    Google Scholar 

  • Parent CE, Caccone A, Petren K (2008) Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Philos Trans R Soc Lond Ser B Biol Sci 363:3347–3361

    Article  Google Scholar 

  • Pascual R, Ortiz-Jaureguizar E, Prado JL (1996) Land mammals: paradigm of Cenozoic South American geobiotic evolution. In: Arratia G (ed) Contribution of Southern South America to Vertebrate Paleontology. Müncher Geowissenschaftliche Abhandlungen, Münich, pp 265–319

    Google Scholar 

  • Pellegrino KCM, Rodrigues MT, Waite AN, Morando M, Yassuda YY, Sites JRJW (2005) Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest. Biol J Linn Soc 85:13–26

    Article  Google Scholar 

  • Perafán C (2017) Distribución actual e histórica del infraorden Mygalomorphae (Araneae) en los Andes del norte. PhD thesis (umpublished), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

    Google Scholar 

  • Perafán C, Pérez-Miles F (2014) The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions. J Nat Hist 48:2389–2418

    Article  Google Scholar 

  • Perafán C, Valencia-Cuellar D (2018) Proshapalopus marimbai, a new tarantula species (Mygalomorphae, Theraphosidae) and first genus record from Colombia. Trop Zool 31:200–213

    Article  Google Scholar 

  • Perafán C, Cifuentes Y, Estrada-Gómez S (2015) Aguapanela, a new tarantula genus from the Colombian Andes (Araneae, Theraphosidae). Zootaxa 4033:529–542

    Article  PubMed  Google Scholar 

  • Perafán C, Galvis W, Gutiérrez M, Pérez-Miles F (2016) Kankuamo, a new theraphosid genus from Colombia (Araneae, Mygalomorphae), with a new type of urticating setae and divergent male genitalia. Zookeys 601:89–109

    Article  Google Scholar 

  • Pérez-Miles F (1998) Notes on the systematics of the little known theraphosid spider Hemirrhagus cervinus, with a description of a new type of urticating hair. J Arachnol 26:120–123

    Google Scholar 

  • Pérez-Miles F, Locht A (2003) Revision and cladistic analysis of the genus Hemirrhagus Simon, 1903 (Araneae, Theraphosidae, Theraphinae). Bull Br Arachnol Soc 12:365–375

    Google Scholar 

  • Pérez-Miles F, Perafán C (2015) Geographic patterns of abdominal urticating setae types in Neotropical tarantulas (Araneae, Theraphosidae). Bol Soc Zool, Uruguay (2ª época) 24: 103–116

    Google Scholar 

  • Pérez-Miles F, Weinmann D (2009) Two new species of Cyriocosmus Simon, 1903 from Peru and the highest altitude record for the genus (Araneae, Theraphosidae, Theraphosinae). Rev Iber Aracnol 17:29–35

    Google Scholar 

  • Pérez-Miles F, Weinmann D (2010) Agnostopelma: a new genus of tarantula without a scopula on leg IV (Araneae: Theraphosidae: Theraphosinae). J Arachnol 38:104–112

    Article  Google Scholar 

  • Pérez-Miles F, Lucas SM, da Silva PI, Bertani R (1996) Systematic revision and cladistic analysis of Theraphosinae (Araneae: Theraphosidae). Mygalomorph 1:33–68

    Google Scholar 

  • Pétillon J, Deruytter D, Decae A, Renault D, Bonte D (2012) Habitat use, but not dispersal limitation, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim Biol 62:181–192

    Article  Google Scholar 

  • Pocock RI (1903) On the geographical distribution of spiders of the order Mygalomorphae. Proc Roy Soc Lond 1:340–368

    Google Scholar 

  • Porter ML (2007) Subterranean biogeography: what have we learned from molecular techniques? J Cave Karst Stud 69:179–186

    Google Scholar 

  • Posadas P, Crisci JV, Katinas L (2006) Historical biogeography: a review of its basic concepts and critical issues. J Arid Environ 66:389–403

    Article  Google Scholar 

  • Prentice TR (1997) Theraphosidae of the Mojave Desert west and north of the Colorado River (Araneae, Mygalomorphae, Theraphosidae). J Arachnol 25:137–176

    Google Scholar 

  • Pugh PJA (2004) Biogeography of spiders (Araneae: Arachnida) on the islands of the Southern Ocean. J Nat Hist 38:1461–1487

    Article  Google Scholar 

  • Rässänen ME, Linna AM, Santos JCR, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386–390

    Article  Google Scholar 

  • Raven RJ (1980) The evolution and biogeography of the mygalomorph spider family Hexathelidae (Araneae, Chelicerata). J Arachnol 8:251–266

    Google Scholar 

  • Raven RJ (1984a) Systematics and biogeography of the mygalomorph spider family Migidae in Australia. Aust J Zool 32:379–390

    Article  Google Scholar 

  • Raven RJ (1984b) A revision of the Aname maculata species group (Araneae, Dipluridae) with notes on biogeography. J Arachnol 12:177–193

    Google Scholar 

  • Raven RJ (1985) The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bull Am Mus Nat Hist 182:1–180

    Google Scholar 

  • Raven RJ (1986) Revision of the spider genus Sason Simon (Sasoninae, Barychelidae, Mygalomorphae) and its historical biogeography. J Arachnol 14:47–70

    Google Scholar 

  • Riccardi A, Rolleri E (1980) Cordillera Patagónica Austral. Acad Nac Ci 2:1173–1306

    Google Scholar 

  • Ricklefs R, Bermingham E (2008) The West Indies as a laboratory of biogeography and evolution. Philos Trans R Soc Lond Ser B Biol Sci 363(1502):2393–2413

    Article  Google Scholar 

  • Ricklefs RE, Jenkins DG (2011) Biogeography and ecology: towards the integration of two disciplines. Philos Trans R Soc Lond Ser B Biol Sci 366(1576):2438–2448

    Article  Google Scholar 

  • Rico-G A, Beltrán JP, Álvarez A, Flórez-D E (2005) Diversidad de arañas (Arachnida: Araneae) en el Parque Nacional Natural Isla Gorgona, pacífico colombiano. Biota Neotrop 5:99–110

    Article  Google Scholar 

  • Rix MG, Cooper SJB, Meusemann K, Klopfstein S, Harrison SE, Hrvey MS, Austin AD (2017) Post-Eocene climate change across continental Australia and the diversification of Australian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol Phylogenet Evol 109:302–320

    Article  PubMed  Google Scholar 

  • Romero A (2009) Cave biology: life in darkness. Cambridge University Press

    Google Scholar 

  • Rosen BR (1988) From fossils to earth history: applied historical biogeography. In: Myers AA, Giller PS (eds) Analytical biogeography. Springer, New York, pp 437–481

    Chapter  Google Scholar 

  • Ross JLS (1996) Geografia do Brasil. Editora da Universidade de São Paulo, São Paulo

    Google Scholar 

  • Rull V (2018) Neotropical diversification: historical overview and conceptual insights. PeerJ Preprints 6: e27294v1. doi:https://doi.org/10.7287/peerj.preprints.27294v1

  • Salfity JA, Marquillas RA (1999) La cuenca Cretácico-Terciaria del norte argentino. In: Caminos R (ed) Geología Argentina. Anales del Instituto de Geología y Recursos Minerales, Buenos Aires, pp 613–626

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press

    Google Scholar 

  • Selden PA (2002) First Mesozoic spider from Cretaceous amber of the Isle of Wight, Southern England. Palaeontology 45:973–983

    Article  Google Scholar 

  • Selden PA, Gall JC (1992) A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology 35:211–235

    Google Scholar 

  • Selden PA, Casado FDC, Mesquita V (2006) Mygalomorph spiders (Araneae: Dipluridae) from the Lower Cretaceous Crato Lagerstätte, Araripe Basin, north-east Brazil. Palaeontology 49:817–826

    Article  Google Scholar 

  • Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst 39:1–19

    Article  Google Scholar 

  • Simpson GG (1980) Splendid isolation: The curious history of South American mammals. Yale University Press, New Haven, CT, p 266

    Google Scholar 

  • Smith BT, Klicka J (2010) The profound influence of the Late Pleistocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33:333–342

    Article  Google Scholar 

  • Starrett J, Hedin M (2007) Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae). Mol Ecol 16:583–604

    Article  PubMed  Google Scholar 

  • Starrett J, Hedin M, Ayoub N, Hayashi CY (2013) Hemocyanin gene family evolution in spiders (Araneae), with implications for phylogenetic relationships and divergence times in the infraorder Mygalomorphae. Gene 524:175–186

    Article  CAS  PubMed  Google Scholar 

  • Starrett J, Hayashi CY, Derkarabetian S, Hedin M (2018) Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada. Mol Phylogenet Evol 118:403–413

    Article  PubMed  Google Scholar 

  • Suguio K, Nogueira ACR (1999) Revisão crítica dos conhecimentos geológicos sobre a formação (ou grupo?) Barreiras do Neógeno e o seupossível significado como testemunho de alguns eventos geológicos mundiais. Geociências, São Paulo 18:461–479

    Google Scholar 

  • Tong Y, Binford G, Rheims CA, Kuntner M, Liu J, Agnarsson I (2019) Huntsmen of the Caribbean: multiples tests of the GAARlandia hypothesis. Mol Phylogenet Evol 130:259–268

    Article  PubMed  Google Scholar 

  • Trajano E (2012) Ecological classification of subterranean organisms. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic, Waltham

    Google Scholar 

  • Turner SP, Longhorn SJ, Hamilton CA, Gabriel R, Pérez-Miles F, Vogler AP (2018) Re-evaluating conservation priorities of New World tarantulas (Araneae: Theraphosidae) in a molecular framework indicates non monophyly of the genera, Aphonopelma and Brachypelma. Syst Biodivers 16:89–107

    Article  Google Scholar 

  • Uliana MA, Biddle KT (1988) Mesozoic–Cenozoic paleogeographic and geodynamic evolution of southern South America. Rev Bras Geoc 18:172–190

    Article  Google Scholar 

  • Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, Hao Z, Johnstone J, Lin Y, Metz MR, Masaki T, Nakashizuka T, Sun IF, Valencia R, Wang Y, Zimmerman JK, Ives AR, Wright SJ (2017) Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550:105–108

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Cuéllar D, Perafán C, Guerrero RJ, Guadanucci JPL (2019) Schismatothelinae spiders (Araneae, Mygalomorphae, Theraphosidae) from Colombia: four new species and an approach to their diversity. Zootaxa 4545:548–562

    Article  PubMed  Google Scholar 

  • Veevers JJ (2004) Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev 68:1–13

    Article  Google Scholar 

  • Vivo M (1997) Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. J Comp Biol 2:65–73

    Google Scholar 

  • Webb SD (1995) Biological implications of the middle Miocene Amazon seaway. Science 269(5222):361–362

    Article  CAS  PubMed  Google Scholar 

  • Webb SD, Rancy A (1996) Late Cenozoic evolution of the neotropical mammal fauna. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environments in tropical Americas. The University of Chicago Press, Chicago, pp 335–358

    Google Scholar 

  • West RC, Marshall SD, Fukushima CS, Bertani R (2008) Review and cladistic analysis of the Neotropical tarantula genus Ephebopus Simon 1892 (Araneae: Theraphosidae) with notes on the Aviculariinae. Zootaxa 1849:35–58

    Article  Google Scholar 

  • Wiens JJ, Camacho A, Goldberg A, Jezkova T, Kaplan ME, Lambert SM, Miller EC, Streicher JW, Walls RL (2019) Climate change, extinction, and Sky Island biogeography in a montane lizard. Mol Ecol 28:2610–2624

    Article  PubMed  Google Scholar 

  • Williams SC (1980) Scorpions of Baja California, Mexico, and adjacent islands. Occasional Papers of the California Academy of Sciences 135:1–127

    Google Scholar 

  • Woodburne MO (2010) The Great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodburne MO, Cione AL, Tonni EP (2006) Central American provincialism and the Great American Biotic Interchange. In: Carranza-Castañeda Ó, Lindsay EH (eds) Advances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic Interchange, vol 4. Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial, pp 73–101

    Google Scholar 

  • World Spider Catalog (2019) Version 20.0. Natural History Museum Bern. http://wsc.nmbe.ch. Last accessed 7 July 2019

  • Wunderlich J (1988) Die fossilen Spinnenim Dominikanischen Bernstein. Beitr Araneol 2:1–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perafán, C., Ferretti, N., Hendrixson, B.E. (2020). Biogeography of New World Tarantulas. In: Pérez-Miles, F. (eds) New World Tarantulas. Zoological Monographs, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-48644-0_6

Download citation

Publish with us

Policies and ethics