Skip to main content

Convergence of Explicit \(P_1\) Finite-Element Solutions to Maxwell’s Equations

  • Conference paper
  • First Online:
Mathematical and Numerical Approaches for Multi-Wave Inverse Problems (CIRM 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 328))

Included in the following conference series:

Abstract

This paper is devoted to the numerical validation of an explicit finite-difference scheme for the integration in time of Maxwell’s equations in terms of the sole electric field. The space discretization is performed by the standard \(P_1\) finite element method assorted with the treatment of the time-derivative term by a technique of the mass-lumping type. The rigorous reliability analysis of this numerical model was the subject of authors’ another paper [2]. More specifically such a study applies to the particular case where the electric permittivity has a constant value outside a sub-domain, whose closure does not intersect the boundary of the domain where the problem is defined. Our numerical experiments in two-dimension space certify that the convergence results previously derived for this approach are optimal, as long as the underlying CFL condition is satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assous, F., Degond, P., Heintze, E., Raviart, P.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)

    Article  MathSciNet  Google Scholar 

  2. Beilina, L., Ruas, V.: An explicit \(P_1\) finite element scheme for Maxwell’s equations with constant permittivity in a boundary neighborhood. arXiv:1808.10720

  3. Beilina, L., Grote, M.: Adaptive hybrid finite element/difference method for Maxwell’s equations. TWMS J. Pure Appl. Math. 1(2), 176–197 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell’s system. Cent. Eur. J. Math. 11(4), 702–733 (2013). https://doi.org/10.2478/s11533-013-0202-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Beilina, L., Klibanov, M.V.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York (2012)

    Book  Google Scholar 

  6. Beilina, L., Cristofol, M., Niinimaki, K.: Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Probl. Imaging 9(1), 1–25 (2015)

    Article  MathSciNet  Google Scholar 

  7. Beilina, L., Thanh, N.T., Klibanov, M.V., Malmberg, J.B.: Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements. J. Comp. Appl. Maths. Elsevier (2015). https://doi.org/10.1016/j.cam.2014.11.055

    Article  MATH  Google Scholar 

  8. Bondestam-Malmberg, J., Beilina, L.: An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations. Appl. Math. Inf. Sci. 12–1, 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bondestam-Malmberg, J., Beilina, L.: Iterative regularization and adaptivity for an electromagnetic coefficient inverse problem. In: AIP Conference Proceedings, vol. 1863, p. 370002 (2017). https://doi.org/10.1063/1.4992549

  10. Bondestam-Malmberg, J.: Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem, Doctoral thesis. University of Gothenburg, Sweden (2017)

    Google Scholar 

  11. Carneiro de Araujo, J.H., Gomes, P.D., Ruas, V.: Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow. J. Comput. Appl. Math. 234–8, 2562–2577 (2010)

    Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland (1978)

    Google Scholar 

  13. Ciarlet Jr., P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numerische Mathematik 82(2), 193–219 (1999)

    Google Scholar 

  14. Elmkies, A., Joly, P.: Finite elements and mass lumping for Maxwell’s equations: the 2D case. Numerical Analysis, C. R. Acad. Sci. Paris, 324, 1287–1293 (1997)

    Google Scholar 

  15. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31, 629–651 (1977)

    Article  MathSciNet  Google Scholar 

  16. Jiang, B.: The Least-Squares Finite Element Method. Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer, Heidelberg (1998)

    Book  Google Scholar 

  17. Jiang, B., Wu, J., Povinelli, L.A.: The origin of spurious solutions in computational electromagnetics. J. Comput. Phys. 125, 104–123 (1996)

    Article  MathSciNet  Google Scholar 

  18. Jin, J.: The finite element method in electromagnetics. Wiley (1993)

    Google Scholar 

  19. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Lecture Notes in Computational Science and Engineering. Springer, Berlin (2003)

    Google Scholar 

  20. Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press (2003)

    Google Scholar 

  21. Monk, P.B., Parrott, A.K.: A dispersion analysis of finite element methods for Maxwell’s equations. SIAM J. Sci. Comput. 15, 916–937 (1994)

    Article  MathSciNet  Google Scholar 

  22. Munz, C.D., Omnes, P., Schneider, R., Sonnendrucker, E., Voss, U.: Divergence correction techniques for Maxwell Solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)

    Article  MathSciNet  Google Scholar 

  23. Nédélec, J.-C.: Mixed finite elements in \(R^3\). Numerische Mathematik 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  24. Paulsen, K.D., Lynch, D.R.: Elimination of vector parasites in finite element Maxwell solutions. IEEE Trans. Microw. Theory Technol. 39, 395–404 (1991)

    Article  Google Scholar 

  25. Ruas, V., Ramos, M.A.S.: A hermite method for Maxwell’s equations. Appl. Math. Inf. Sci. 12(2), 271–283 (2018)

    Article  MathSciNet  Google Scholar 

  26. WavES, the software package. http://www.waves24.com

Download references

Acknowledgements

The research of the first author is supported by the Swedish Research Council grant VR 2018-03661. The second author gratefully acknowledges the financial support provided by CNPq/Brazil through grant 307996/2008-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Beilina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beilina, L., Ruas, V. (2020). Convergence of Explicit \(P_1\) Finite-Element Solutions to Maxwell’s Equations. In: Beilina, L., Bergounioux, M., Cristofol, M., Da Silva, A., Litman, A. (eds) Mathematical and Numerical Approaches for Multi-Wave Inverse Problems. CIRM 2019. Springer Proceedings in Mathematics & Statistics, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-030-48634-1_7

Download citation

Publish with us

Policies and ethics