Skip to main content

Fractional Order Models of Dynamic Systems

  • Chapter
  • First Online:
Automatic Control, Robotics, and Information Processing

Abstract

This chapter presents the use of models of non-integer (fractional) order for modeling of dynamic systems. Ultracapacitors have been presented as systems with these types of dynamics. Their internal structure and energy storage method were thoroughly analyzed. The diffusion process used in their operation has in their mathematical description derivatives of non integer order, which confirms the legitimacy of using models of non integer order to describe their dynamics. As part of this chapter, various models of ultracapacitors used to model their dynamics in time and frequency domain are presented. The presented transmittance models have been thoroughly discussed and confirmed by their comparison with properties observed in laboratory experiments with the ultracapacitors. The last chapter presents a fractional order neural network, which, using the differences of the non integer order, despite its simple structure, allows for accurate mapping of the process of charging and discharging ultracapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belhachemi, F., RaĂ«l, S., Davat, B.: A physical based model of power electric double-layer supercapacitors. In: Proceedings of IEEE Industry Applications Conference, vol. 5, pp. 3069–3076, Oct 2000

    Google Scholar 

  2. Bertrand, N., Sabatier, J., Briat, O., Vinassa, J.-M.: Fractional non-linear modelling of ultracapacitors. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1327–1337 (2010)

    Google Scholar 

  3. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Brouji, H., Vinassa, J.M., Briat, O., Bertrand, N., Woirgard, E.: Ultracapacitors self discharge modelling using a physical description of porous electrode impedance. In: Proceedings of IEEE Vehicle Power and Propulsion Conference (VPPC), September 2008

    Google Scholar 

  5. Buller, S., Karden, E., Kok, D., De Doncker, R.W.: Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Trans. Ind. Appl. 38(6), 1622–1626 (2002)

    Article  Google Scholar 

  6. Chu-qi, S., Du-que, Z.: Computer simulation study on ultracapacitor for electric vehicle. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, vol. 1, pp. 199 –203, Nov 2009

    Google Scholar 

  7. Davidson, D.W., Cole, R.H.: Dielectric relaxation in glycerine. J. Chem. Phys. 18, 1417 (1951)

    Article  Google Scholar 

  8. Davidson, D.W., Cole, R.H.: Dielectric relaxation in glycerine, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484–1490 (1951)

    Article  Google Scholar 

  9. DzieliƄski, A., Sarwas, G., Sierociuk, D.: Time domain validation of ultracapacitor fractional order model. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3730–3735 (2010)

    Google Scholar 

  10. DzieliƄski, A., Sarwas, G., Sierociuk, D.: Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. 11 (2011)

    Google Scholar 

  11. DzieliƄski, A., Sierociuk, D., Sarwas, G.: Fractional-order modeling and control of selected physical systems. In: Petráơ, I., (ed.) Handbook of Fractional Calculus with Applications. Applications in Control, vol. 6, pp. 293–320. De Gruyter, Boston (2019)

    Google Scholar 

  12. Faranda, R., Gallina, M., Son, D.T.: A new simplified model OS double-layer capacitors. In: Proceedings of International Conference on Clean Electrical Power, ICCEP’07, pp. 706–710 (2007)

    Google Scholar 

  13. Fouda, M.E., Elwakil, A.S., Radwan, A.G., Allagui, A.: Power and energy analysis of fractional-order electrical energy storage devices. Energy 111, 785–792 (2016)

    Article  Google Scholar 

  14. Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3) (2015)

    Google Scholar 

  15. Górecki, P.: 2700 faradów, czyli super(ultra)kondensatory. Elektronika dla Wszystkich 6, 21–24 (2001)

    Google Scholar 

  16. Haus, J.W., Kehr, K.W.: Diffusionnext term in previous termregular and disordered latticesnext term. Phys. Rep. 150, 263–406 (1987)

    Article  Google Scholar 

  17. Kopka, R., TarczyƄski, W.: Measurement system for determination of supercapacitor equivalent parameters. Metrol. Meas. Syst. 20(4), 581–590 (2013)

    Article  Google Scholar 

  18. Kopka, R., TarczyƄski, W.: Influence of the operation conditions on the supercapacitors reliability parameters. Pomiary Autom. Robot. 49–54 (2015)

    Google Scholar 

  19. Kopka, R., TarczyƄski, W.: A fractional model of supercapacitors for use in energy storage systems of next-generation shipboard electrical networks. J. Marine Eng. Technol. 16(4), 200–208 (2017)

    Article  Google Scholar 

  20. KosztoƂowicz, T.: Subdiffusion in a system with a thick membrane. J. Membr. Sci. 320, 492–499 (2008)

    Article  Google Scholar 

  21. Lai, J.S., Levy, S., Rose, M.F.: High energy density double-layer capacitors for energy storage applications. IEEE Aerosp. Electron. Syst. Mag. 7 (1992)

    Google Scholar 

  22. Lopes, A.M., Tenreiro Machado, J.A., Ramalho, E.: On the fractional-order modeling of wine. Eur. Food Res. Technol. 243(6), 921–929 (2017)

    Google Scholar 

  23. Macias, M., Sierociuk, D.: Modeling of electrical drive system with flexible shaft based on fractional calculus. In: 2013 14th International Carpathian Control Conference (ICCC), pp. 222–227, May 2013

    Google Scholar 

  24. Marie-Francoise, J.N., Gualous, H., Berthon, A.: Artificial neural network control and energy management in 42 v dc link. In: European Conference on Power Electronics and Applications, 8 pp. (2005)

    Google Scholar 

  25. Marie-Francoise, J.N., Gualous, H., Berthon, A.: Supercapacitor thermal- and electrical-behaviour modelling using ANN. IEE Proc. Electric Power Appl. 153(2), 255–262 (2006)

    Article  Google Scholar 

  26. Neto, J.P., Coelho, R.M., ValĂ©rio, D., Vinga, S., Sierociuk, D., Malesza, W., Macias, M., DzieliƄski, A.: Variable order differential models of bone remodelling. IFAC-Papers OnLine 50(1), 8066 – 8071 (2017). 20th IFAC World Congress

    Google Scholar 

  27. Ostalczyk, P.: Epitome of the fractional calculus: theory and its applications in automatics. Wydawnictwo Politechniki Ɓódzkiej, ƁódĆș, Poland (2008). (in Polish)

    Google Scholar 

  28. Panasonic Corporation: Electric double layer capacitor (gold capacitor), series sd, catalogue. http://industrial.panasonic.com (2006)

  29. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego, USA (1999)

    Google Scholar 

  30. Podlubny, I., Petras, I., Skovranek, T., Terpak, J.: Toolboxes and programs for fractional-order system identification, modeling, simulation, and control. In: Petras, I., Podlubny, I., Kacur, J. (eds.) Proceedings of the 2016 17th International Carpathian Control Conference (ICCC), Tatranska Lomnica, Slovakia, May 29–Jun 01, 2016, pp. 608–612 (2016)

    Google Scholar 

  31. Quintana, J.J., Ramos, A., Nuez, I.: Identification of the fractional impedance of ultracapacitors. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal, IFAC FDA’06, 19–21 July 2006

    Google Scholar 

  32. Riu, D., Reti\(\grave{e}\)re, N., Linzen, D.: Half-order modelling of supercapacitors. In: Proceedings of IEEE Industry Applications Conference, 39th IAS Annual Meeting, vol. 4, pp. 2550–2554 (2004)

    Google Scholar 

  33. Sakrajda, P., Sierociuk, D.: Modeling heat transfer process in grid-holes structure changed in time using fractional variable order calculus. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems, pp. 297–306. Springer International Publishing, Cham (2017)

    Google Scholar 

  34. Sarwas, G.: Modelling and control of systems with ultracapacitors using fractional order calculus. Ph.D. thesis, Faculty of Electrical Engineering, Warsaw University of Technology (2012)

    Google Scholar 

  35. Sarwas, G., Sierociuk, D., DzieliƄski, A.: Modeling and control with discrete fractional order artificial neural network. In: 2012 13th International Carpathian Control Conference (ICCC), May 2012

    Google Scholar 

  36. Sarwas, G., Sierociuk, D., DzieliƄski, A.: Ultracapacitor model based on anomalous diffusion. In: The Fifth Symposium on Fractional Differentiation and Its Applications (FDA12), Nanjing, China, May 2012

    Google Scholar 

  37. Sierociuk, D.: Fractional order discrete state–space system Simulink Toolkit user guide. http://www.ee.pw.edu.pl/~dsieroci/fsst/fsst.htm

  38. Sierociuk, D.: Estymacja i sterowanie dyskretnych ukƂadów dynamicznych uƂamkowego rzędu opisanych w przestrzeni stanu. Ph.D. thesis, Warsaw University of Technology (Poland) (2007)

    Google Scholar 

  39. Sierociuk, D., DzieliƄski, A.: Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 16, 129–140 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371, 2013 (1990)

    MATH  Google Scholar 

  41. Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Modell. 39(13), 3876–3888 (2015). http://dx.doi.org/10.1016/j.apm.2014.12.009

  42. Sierociuk, D., Malesza, W., Macias, M.: Numerical schemes for initialized constant and variable fractional-order derivatives: matrix approach and its analog verification. J. Vib. Control (2015). https://doi.org/10.1177/1077546314565438

    Article  MATH  Google Scholar 

  43. Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. Circuits, Syst. Signal Process. 34(4), 1077–1113 (2015)

    Article  MathSciNet  Google Scholar 

  44. Sierociuk, D., PetrĂĄs̆, I.: Modeling of heat transfer process by using discrete fractional-order neural networks. In: Proceedings of 16th International Conference on Methods and Models in Automation and Robotics, MMAR’11 Międzyzdroje, Aug 2011

    Google Scholar 

  45. Sierociuk, D., Sarwas, G., DzieliƄski, A.: Discrete fractional order artificial neural network. Acta Mech. Autom. 5(2), 128–132 (2011)

    MATH  Google Scholar 

  46. Sierociuk, D., Sarwas, G., Twardy, M.: Resonance phenomena in circuits with ultracapacitors. In: Proceedings of 12th International Conference on Environment and Electrical Engineering (EEEIC), pp. 197–202 (2013)

    Google Scholar 

  47. Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)

    Google Scholar 

  48. Wang, Y., Hartley, T.T., Lorenzo, C.F., Adams, J.L., Carletta, J.E., Veillette, R.J.: Modeling ultracapacitors as fractional-order systems. In: Baleanu, D., Guvenc, Z.B., Machado, J.A.T. (eds.) New Trends in Nanotechnology and Fractional Calculus Applications, pages 257+ (2010). International Workshops on New Trends in Science and Technology (NTST 08)/ Fractional Differentiation and Its Applications (FDA08), Cankaya Univ., Ankara, Turkey, Nov 5–7, 2008

    Google Scholar 

  49. Wen, C., Jianjun, Z., Jinyang, Z.: A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 16(1), 76–92 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectrics Electrical Insul. 1 (1994)

    Google Scholar 

  51. Ziubinski, P., Sierociuk, D.: Fractional order noise identification with application to temperature sensor data. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2336, May 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej DzieliƄski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DzieliƄski, A., Sarwas, G., Sierociuk, D. (2021). Fractional Order Models of Dynamic Systems. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_5

Download citation

Publish with us

Policies and ethics