Skip to main content

Emergencies at Potentially Dangerous Objects Causing Atmosphere Pollution: Peculiarities of Chemically Hazardous Substances Migration

  • Chapter
  • First Online:
Book cover Systems, Decision and Control in Energy I

Abstract

The most chemically dangerous technogenic objects on the territory of Ukraine are thermal power plants, combined heat and power plants, nuclear power plants, enterprises of chemical industry and metallurgy. Various pollutants are released into the atmosphere through chimneys of different heights due to their operation. Emergencies can occur due to significant pollution of the surface of the atmosphere in adjacent areas due to technological disturbances or adverse weather conditions, or unauthorized emissions, etc. Preventive measures are based on the application of mathematical models and related software for the propagation of harmful impurities in the atmosphere. Structure of new information and technical methods of such emergencies prevention is presented. Given work describes the most likely occurrence and development of emergencies related to entry of toxic substances into the atmosphere at these potentially dangerous objects. Diagram shows the scheme of migration of impurities in the air due to technogenic emissions. Influence of the main factors on scattering of impurities under continuous and volatile emission conditions is described. It is shown that the greatest influence on distribution of concentration of dangerous substances in the atmospheric air is caused by: source characteristics (source type, mode and conditions of emission), meteorological characteristics (wind direction and velocity, atmospheric stratification, precipitation, temperature and humidity), pollutant characteristics (ability to interact chemically with other substances in atmospheric air, gravitational deposition rate, absorption coefficient of the underlying surface), characteristics of the earth’s surface of adjacent area (topography, roughness). Obtained results are basis for the further development of new mathematical models of atmospheric pollution from emissions of chemically hazardous objects. It is necessary for effective solution of the problems to prevent such emergencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, G., Sheng, Z.: Image quality assessment for intelligent emergency application based on deep neural network. J. Vis. Commun. Image Represent. 63, 102581 (2019). https://doi.org/10.1016/j.jvcir.2019.102581

    Article  Google Scholar 

  2. Wang, L., Wang, Y.-M., Martínez, L.: A group decision method based on prospect theory for emergency situations. Inform. Sci. 418–419, 119–135 (2017). https://doi.org/10.1016/j.ins.2017.07.037

    Article  Google Scholar 

  3. Islam, M.S., Ahmed, M.M., Islam, S.: A conceptual system architecture for countering the civilian unmanned aerial vehicles threat to nuclear facilities. Int. J. Crit. Infrastruct. Prot. 23, 139–149 (2018). https://doi.org/10.1016/j.ijcip.2018.10.003

    Article  Google Scholar 

  4. Ma, G., Wu, Z. BIM-based building fire emergency management: Combining building users’ behavior decisions. Automat. Constr., 2020, vol. 109. https://doi.org/10.1016/j.autcon.2019.102975

  5. Fathi, R., Thom, D., Koch, S., Ertl, T., Fiedrich, F.: VOST: a case study in voluntary digital participation for collaborative emergency management. Inf. Process. Manage. 102174 (2019). https://doi.org/10.1016/j.ipm.2019.102174

  6. Vallejo, D., Castro-Schez, J.J., Glez-Morcillo, C., Albusac, J.: Multi-agent architecture for information retrieval and intelligent monitoring by UAVs in known environments affected by catastrophes. Eng. Appl. Artif. Intell. 87, 103243 (2020). https://doi.org/10.1016/j.engappai.2019.103243

    Article  Google Scholar 

  7. Gong, P., Tang, X.B., Huang, X., Wang, P., Wen, L.S., Zhu, X.X., Zhou, C.: Locating lost radioactive sources using a UAV radiation monitoring system. Appl. Radiat. Isot. 150, 1–13 (2019). https://doi.org/10.1016/j.apradiso.2019.04.037

    Article  Google Scholar 

  8. Zabulonov, Y.L., Burtnyak, V.M., Zolkin, I.O.: Airborne gamma spectrometric survey in the Chernobyl exclusion zone based on oktokopter UAV type. Prob. Atomic Sci. Technol. 5, 163–167 (2015)

    Google Scholar 

  9. Pereira, M.N.A., Schirru, R., Gomes, K.J., Cunha, J.L.: Development of a mobile dose prediction system based on artificial neural networks for NPP emergencies with radioactive material releases. Ann. Nucl. Energy 105, 219–225 (2017). https://doi.org/10.1016/j.anucene.2017.03.017

    Article  Google Scholar 

  10. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Yatsyshyn, T., Matvieieva, I.: Analysis of possible causes of NPP emergencies to minimize risk of their occurrence. Nucl. Radiat. Saf. 81(1), 75–80 (2019). https://doi.org/10.32918/nrs.2019.1(81).13

    Article  Google Scholar 

  11. Holla, K., Moricova, V.: Specifics of monitoring and analysing emergencies in information systems. Transp. Res. Proc. 40, 1343–1348 (2019). https://doi.org/10.1016/j.trpro.2019.07.186

    Article  Google Scholar 

  12. Ropero, F., Vaquerizo-Hdez, D., Muñoz, P., Barrero, D.F., R-Moreno, M.D.: LARES An AI-based teleassistance system for emergency home monitoring. Cogn. Syst. Res. 56, 213–222 (2019). https://doi.org/10.1016/j.cogsys.2019.03.019

  13. Raja Shekhar, S.S., Venkata Srinivas, C., Rakesh, P.T., Deepu, R., Prasada Rao, P.V.V., Baskaran, R., Venkatraman, B.: Online Nuclear Emergency Response System (ONERS) for consequence assessment and decision support in the early phase of nuclear accidents—Simulations for postulated events and methodology validation. Prog. Nucl. Energy 119 (2020). https://doi.org/10.1016/j.pnucene.2019.103177

  14. Tsiouri, V., Kovalets, I., Kakosimos, K.E., Andronopoulos, S., Bartzis, J.G.: Evaluation of advanced emergency response methodologies to estimate the unknown source characteristics of the hazardous material within urban environments. In: HARMO 2014—16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Proceedings, pp. 561–565 (2014)

    Google Scholar 

  15. Kovalets, I.V., Robertson, L., Persson, C., Didkivska, S.N., Ievdin, I.A., Trybushnyi, D.: Calculation of the far range atmospheric transport of radionuclides after the Fukushima accident with the atmospheric dispersion model MATCH of the JRODOS system. Int. J. Environ. Pollut. 54(2–4), 101–109 (2014). https://doi.org/10.1504/IJEP.2014.065110

    Article  Google Scholar 

  16. Cui, J., Lang, J., Chen, T., Cheng, S., Li, Y.: Emergency monitoring layout method for sudden air pollution accidents based on a dispersion model, fuzzy evaluation, and post-optimality analysis. Atmos. Environ. 222 (2020). https://doi.org/10.1016/j.atmosenv.2019.117124

  17. Singh, R.K., Rao, A.R.: Steam leak detection in advance reactors via acoustics method. Nucl. Eng. Des. 241(7), 2448–2454 (2011). https://doi.org/10.1016/j.nucengdes.2011.04.028

    Article  Google Scholar 

  18. Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of Construction of Systems for Diagnosing the Energy Equipment. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, vol. 281, pp. 1–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44443-3_1

  19. Popov, O., Yatsyshyn, A.: Mathematical tools to assess soil contamination by deposition of technogenic emissions. In: Dent, D., Dmytruk, Y. (eds.) Soil Science Working for a Living: Applications of soil science to present-day problems, pp. 127–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45417-7_11

  20. Shkitsa, L.E., Yatsyshyn, T.M., Popov, A.A., Artemchuk, V.A.: The development of mathematical tools for ecological safe of atmosfere on the drilling well area. Neftyanoe khozyaystvo—Oil Industry, vol. 11, pp. 136–140 (2013)

    Google Scholar 

  21. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Yatsyshyn, T.: Conceptual approaches for development of informational and analytical expert system for assessing the NPP impact on the environment. Nucl. Radiat. Saf. 79(3), 56–65 (2018). https://doi.org/10.32918/nrs.2018.3(79).09

    Article  Google Scholar 

  22. Zaporozhets, A.O., Redko, O.O., Babak, V.P., Eremenko, V.S., Mokiychuk, V.M.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018). https://doi.org/10.29202/nvngu/2018-5/14

    Article  Google Scholar 

  23. Kovach, V., Lysychenko, G.: Toxic Soil Contamination and Its Mitigation in Ukraine. In: Dent, D., Dmytruk, Y. (eds.) Soil Science Working for a Living. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45417-7_18

  24. Mergner, R., Janssen, R., Kovach, V., et al.: Fostering sustainable feedstock production for advanced biofuels on underutilised land in Europe. In European Biomass Conference and Exhibition Proceedings, pp. 125–130 (2017)

    Google Scholar 

  25. Yatsyshyn, T., Mykhailiuk, Y., Liakh, M., Mykhailiuk, I., Savyk, V., Dobrovolsky, I.: EStablishing the dependence of pollutant concentration on operational conditions at facilities of an oilandgas complex. East. Eur. J. Ent. Technol. 2(10–92), 56–63 (2018). https://doi.org/10.15587/1729-4061.2018.126624

    Article  Google Scholar 

  26. Shkitsa, L., Yatsyshyn, T., Lyakh, M., Sydorenko, O.: Means of atmospheric air pollution reduction during drilling wells. In: IOP Conference Series: Materials Science and Engineering, vol. 144 (2016). https://doi.org/10.1088/1757-899x/144/1/012009

  27. Popov, O.O., Iatsyshyn, A.V., Kovach, V.O., Artemchuk, V.O., Kameneva, I.P., Taraduda, D.V., Sobyna, V.O., Sokolov, D.L., Dement, M.O., Yatsyshyn, T.M.: Risk assessment for the population of Kyiv, Ukraine as a result of atmospheric air pollution. J. Health Poll. 10(25), 200303 (2020). https://doi.org/10.5696/2156-9614-10.25.200303

    Article  Google Scholar 

  28. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Hurkovskyi, V., Nikolaiev, K., Yatsyshyn, T., Dimitriieva, D.: Physical features of pollutants spread in the air during the emergency at NPPs. Nucl. Radiat. Saf. 84(4), 88–98 (2019). https://doi.org/10.32918/nrs.2019.4(84).11

    Article  Google Scholar 

  29. Berland, M.: Modern Problems of Atmospheric Diffusion and Air Pollution. Gidrometeoizdat, Russia, Leningrad (1975)

    Google Scholar 

  30. Atmosphere: Handbook, Leningrad: Gidrometeoizdat, Russia (1991)

    Google Scholar 

  31. Fedotov, A.V. Analysis of methods for assessing and monitoring the environmental and economic consequences of emergency situations. Gornyy informatsionno-analiticheskiy byulleten 5, 194–198 (2008)

    Google Scholar 

  32. Monin, A.S., Yaglom, A.M.: Statistical hydromechanics. Theory of Turbulence. St. Petersburg: Gidrometeoizdat, Russia (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popov, O., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Pomaza-Ponomarenko, A. (2020). Emergencies at Potentially Dangerous Objects Causing Atmosphere Pollution: Peculiarities of Chemically Hazardous Substances Migration. In: Babak, V., Isaienko, V., Zaporozhets, A. (eds) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, vol 298. Springer, Cham. https://doi.org/10.1007/978-3-030-48583-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48583-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48582-5

  • Online ISBN: 978-3-030-48583-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics