Skip to main content

Thrombospondin in Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1272))

Abstract

Thrombospondins (TSPs) are multifaceted proteins that contribute to physiologic as well as pathologic conditions. Due to their multiple receptor-binding domains, TSPs display both oncogenic and tumor-suppressive qualities and are thus essential components of the extracellular matrix. Known for their antiangiogenic capacity, TSPs are an important component of the tumor microenvironment. The N- and C-terminal domains of TSP are, respectively, involved in cell adhesion and spreading, an important feature of wound healing as well as cancer cell migration. Previously known for the activation of TGF-β to promote tumor growth and inflammation, TSP-1 has recently been found to be transcriptionally induced by TGF-β, implying the presence of a possible feedback loop. TSP-1 is an endogenous inhibitor of T cells and also mediates its immunosuppressive effects via induction of Tregs. Given the diverse roles of TSPs in the tumor microenvironment, many therapeutic strategies have utilized TSP-mimetic peptides or antibody blockade as anti-metastatic approaches. This chapter discusses the diverse structural domains, functional implications, and anti-metastatic therapies in the context of the role of TSP in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawler J, Hynes RO (1986) The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 103(5):1635–1648

    CAS  PubMed  Google Scholar 

  2. Stenina-Adognravi O (2014) Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 37:69–82

    CAS  PubMed  Google Scholar 

  3. Finlin BS et al (2013) Regulation of thrombospondin-1 expression in alternatively activated macrophages and adipocytes: role of cellular cross talk and omega-3 fatty acids. J Nutr Biochem 24(9):1571–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Raugi GJ, Olerud JE, Gown AM (1987) Thrombospondin in early human wound tissue. J Invest Dermatol 89(6):551–554

    CAS  PubMed  Google Scholar 

  5. Frolova EG et al (2010) Thrombospondin-4 regulates vascular inflammation and atherogenesis. Circ Res 107(11):1313–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Agah A et al (2002) The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 161(3):831–839

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang Y et al (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 102(16):5814–5819

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma XJ et al (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7

    PubMed  PubMed Central  Google Scholar 

  9. Miao WM et al (2001) Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and -independent mechanisms. Cancer Res 61(21):7830–7839

    CAS  PubMed  Google Scholar 

  10. Dalla-Torre CA et al (2006) Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 6:237

    PubMed  PubMed Central  Google Scholar 

  11. Greco SA et al (2010) Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation. BMC Cancer 10:494

    PubMed  PubMed Central  Google Scholar 

  12. McCart Reed AE et al (2013) Thrombospondin-4 expression is activated during the stromal response to invasive breast cancer. Virchows Arch 463(4):535–545

    CAS  PubMed  Google Scholar 

  13. Chen PC et al (2017) Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression. J Hematol Oncol 10(1):33

    PubMed  PubMed Central  Google Scholar 

  14. Liu JF et al (2018) Thrombospondin 2 promotes tumor metastasis by inducing matrix metalloproteinase-13 production in lung cancer cells. Biochem Pharmacol 155:537–546

    CAS  PubMed  Google Scholar 

  15. Streit M et al (1999) Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci U S A 96(26):14888–14893

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65(5):700–712

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang T et al (2017) Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget 8(48):84546–84558

    PubMed  PubMed Central  Google Scholar 

  18. Lawler J, Detmar M (2004) Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol 36(6):1038–1045

    CAS  PubMed  Google Scholar 

  19. Chandrasekaran S et al (1999) Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem 274(16):11408–11416

    CAS  PubMed  Google Scholar 

  20. Gomes N, Legrand C, Fauvel-Lafeve F (2005) Shear stress induced release of von Willebrand factor and thrombospondin-1 in HUVEC extracellular matrix enhances breast tumour cell adhesion. Clin Exp Metastasis 22(3):215–223

    CAS  PubMed  Google Scholar 

  21. John AS, Rothman VL, Tuszynski GP (2010) Thrombospondin-1 (TSP-1) stimulates expression of integrin alpha6 in human breast carcinoma cells: a downstream modulator of TSP-1-induced cellular adhesion. J Oncol 2010:645376

    PubMed  PubMed Central  Google Scholar 

  22. Guo N et al (2000) Thrombospondin-1 promotes alpha3beta1 integrin-mediated adhesion and neurite-like outgrowth and inhibits proliferation of small cell lung carcinoma cells. Cancer Res 60(2):457–466

    CAS  PubMed  Google Scholar 

  23. Streit M et al (1999) Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 155(2):441–452

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Albo D et al (2000) Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor. Br J Cancer 83(3):298–306

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pal SK et al (2016) THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med 45(10):730–739

    CAS  PubMed  Google Scholar 

  26. Seliger C et al (2013) Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One 8(11):e78935

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Motegi K et al (2008) Differential involvement of TGF-beta1 in mediating the motogenic effects of TSP-1 on endothelial cells, fibroblasts and oral tumour cells. Exp Cell Res 314(13):2323–2333

    CAS  PubMed  Google Scholar 

  28. Guo N et al (1997) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57(9):1735–1742

    CAS  PubMed  Google Scholar 

  29. Dawson DW et al (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138(3):707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanda S et al (1999) Role of thrombospondin-1-derived peptide, 4N1K, in FGF-2-induced angiogenesis. Exp Cell Res 252(2):262–272

    CAS  PubMed  Google Scholar 

  31. Taraboletti G et al (1997) The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor. Cell Growth Differ 8(4):471–479

    CAS  PubMed  Google Scholar 

  32. Kawahara N et al (1998) Enhanced expression of thrombospondin-1 and hypovascularity in human cholangiocarcinoma. Hepatology 28(6):1512–1517

    CAS  PubMed  Google Scholar 

  33. Fontanini G et al (1999) Thrombospondins I and II messenger RNA expression in lung carcinoma: relationship with p53 alterations, angiogenic growth factors, and vascular density. Clin Cancer Res 5(1):155–161

    CAS  PubMed  Google Scholar 

  34. Li Z et al (2001) Thrombospondin-1 inhibits TCR-mediated T lymphocyte early activation. J Immunol 166(4):2427–2436

    CAS  PubMed  Google Scholar 

  35. Miller TW et al (2013) Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biol 32(6):316–324

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li SS et al (2002) T lymphocyte expression of thrombospondin-1 and adhesion to extracellular matrix components. Eur J Immunol 32(4):1069–1079

    CAS  PubMed  Google Scholar 

  37. Kudo-Saito C et al (2009) Cancer metastasis is accelerated through immunosuppression during snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206

    CAS  PubMed  Google Scholar 

  38. Li Y et al (2013) Thrombospondin 1 activates the macrophage toll-like receptor 4 pathway. Cell Mol Immunol 10(6):506–512

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin-Manso G et al (2008) Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res 68(17):7090–7099

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kirsch T et al (2010) Endothelial-derived thrombospondin-1 promotes macrophage recruitment and apoptotic cell clearance. J Cell Mol Med 14(7):1922–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pierson BA et al (1996) Human natural killer cell expansion is regulated by thrombospondin-mediated activation of transforming growth factor-beta 1 and independent accessory cell-derived contact and soluble factors. Blood 87(1):180–189

    CAS  PubMed  Google Scholar 

  42. Van VQ et al (2006) Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs. EMBO J 25(23):5560–5568

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Doyen V et al (2003) Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 198(8):1277–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bandyopadhyay G et al (2014) Elevated postinjury thrombospondin 1-CD47 triggering aids differentiation of patients' defective inflammatory CD1a+dendritic cells. J Leukoc Biol 96(5):797–807

    PubMed  PubMed Central  Google Scholar 

  45. Weng TY et al (2014) A novel cancer therapeutic using thrombospondin 1 in dendritic cells. Mol Ther 22(2):292–302

    CAS  PubMed  Google Scholar 

  46. Adams JC, Lawler J (2011) The thrombospondins. Cold Spring Harb Perspect Biol 3(10):a009712

    PubMed  PubMed Central  Google Scholar 

  47. Adams JC, Tucker RP (2000) The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 218(2):280–299

    CAS  PubMed  Google Scholar 

  48. Tolsma SS et al (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122(2):497–511

    CAS  PubMed  Google Scholar 

  49. Guo NH et al (1997) Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin-1. J Pept Res 50(3):210–221

    CAS  PubMed  Google Scholar 

  50. Iruela-Arispe ML et al (1999) Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100(13):1423–1431

    CAS  PubMed  Google Scholar 

  51. Mikhailenko I et al (1997) Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD). High affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein. J Biol Chem 272(10):6784–6791

    CAS  PubMed  Google Scholar 

  52. Wang S et al (2004) Internalization but not binding of thrombospondin-1 to low density lipoprotein receptor-related protein-1 requires heparan sulfate proteoglycans. J Cell Biochem 91(4):766–776

    CAS  PubMed  Google Scholar 

  53. Roberts DD et al (1985) The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J Biol Chem 260(16):9405–9411

    CAS  PubMed  Google Scholar 

  54. Roberts DD, Sherwood JA, Ginsburg V (1987) Platelet thrombospondin mediates attachment and spreading of human melanoma cells. J Cell Biol 104(1):131–139

    CAS  PubMed  Google Scholar 

  55. Roberts DD (1988) Interactions of thrombospondin with sulfated glycolipids and proteoglycans of human melanoma cells. Cancer Res 48(23):6785–6793

    CAS  PubMed  Google Scholar 

  56. Jimenez B et al (2001) C-Jun N-terminal kinase activation is required for the inhibition of neovascularization by thrombospondin-1. Oncogene 20(26):3443–3448

    CAS  PubMed  Google Scholar 

  57. Jimenez B et al (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1):41–48

    CAS  PubMed  Google Scholar 

  58. Yehualaeshet T et al (1999) Activation of rat alveolar macrophage-derived latent transforming growth factor beta-1 by plasmin requires interaction with thrombospondin-1 and its cell surface receptor, CD36. Am J Pathol 155(3):841–851

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Leung LL (1984) Role of thrombospondin in platelet aggregation. J Clin Invest 74(5):1764–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Silverstein RL et al (1992) Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. Role of CD36 as a thrombospondin receptor. J Biol Chem 267(23):16607–16612

    CAS  PubMed  Google Scholar 

  61. Volpert OV et al (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8(4):349–357

    CAS  PubMed  Google Scholar 

  62. Chen H, Herndon ME, Lawler J (2000) The cell biology of thrombospondin-1. Matrix Biol 19(7):597–614

    CAS  PubMed  Google Scholar 

  63. Zheng B, Clemmons DR (1998) Blocking ligand occupancy of the alphaVbeta3 integrin inhibits insulin-like growth factor I signaling in vascular smooth muscle cells. Proc Natl Acad Sci U S A 95(19):11217–11222

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Neugebauer KM et al (1991) Vitronectin and thrombospondin promote retinal neurite outgrowth: developmental regulation and role of integrins. Neuron 6(3):345–358

    CAS  PubMed  Google Scholar 

  65. Stern M, Savill J, Haslett C (1996) Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am J Pathol 149(3):911–921

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kosfeld MD, Frazier WA (1992) Identification of active peptide sequences in the carboxyl-terminal cell binding domain of human thrombospondin-1. J Biol Chem 267(23):16230–16236

    CAS  PubMed  Google Scholar 

  67. Kosfeld MD, Frazier WA (1993) Identification of a new cell adhesion motif in two homologous peptides from the COOH-terminal cell binding domain of human thrombospondin. J Biol Chem 268(12):8808–8814

    CAS  PubMed  Google Scholar 

  68. Gao AG, Frazier WA (1994) Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins. J Biol Chem 269(47):29650–29657

    CAS  PubMed  Google Scholar 

  69. Moralez AM et al (2005) Insulin-like growth factor binding protein-5 (IGFBP-5) interacts with thrombospondin-1 to induce negative regulatory effects on IGF-I actions. J Cell Physiol 203(2):328–334

    CAS  PubMed  Google Scholar 

  70. Chung J, Gao AG, Frazier WA (1997) Thrombospondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem 272(23):14740–14746

    CAS  PubMed  Google Scholar 

  71. Wang XQ, Lindberg FP, Frazier WA (1999) Integrin-associated protein stimulates alpha2beta1-dependent chemotaxis via Gi-mediated inhibition of adenylate cyclase and extracellular-regulated kinases. J Cell Biol 147(2):389–400

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lamy L et al (2007) Interactions between CD47 and thrombospondin reduce inflammation. J Immunol 178(9):5930–5939

    CAS  PubMed  Google Scholar 

  73. Yabkowitz R, Dixit VM (1991) Human carcinoma cells bind thrombospondin through a Mr 80,000/105,000 receptor. Cancer Res 51(14):3648–3656

    CAS  PubMed  Google Scholar 

  74. Vogel T et al (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 53(1):74–84

    CAS  PubMed  Google Scholar 

  75. Sipes JM et al (1999) Cooperation between thrombospondin-1 type 1 repeat peptides and alpha(v)beta(3) integrin ligands to promote melanoma cell spreading and focal adhesion kinase phosphorylation. J Biol Chem 274(32):22755–22762

    CAS  PubMed  Google Scholar 

  76. Short SM et al (2005) Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J Cell Biol 168(4):643–653

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bagavandoss P, Wilks JW (1990) Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun 170(2):867–872

    CAS  PubMed  Google Scholar 

  78. Cursiefen C et al (2011) Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J Exp Med 208(5):1083–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sheibani N, Newman PJ, Frazier WA (1997) Thrombospondin-1, a natural inhibitor of angiogenesis, regulates platelet-endothelial cell adhesion molecule-1 expression and endothelial cell morphogenesis. Mol Biol Cell 8(7):1329–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bougnaud S et al (2016) Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget 7(22):31955–31971

    PubMed  PubMed Central  Google Scholar 

  81. Isenberg JS et al (2005) Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci U S A 102(37):13141–13146

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Isenberg JS et al (2008) Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 111(2):613–623

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Isenberg JS, Wink DA, Roberts DD (2006) Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovasc Res 71(4):785–793

    CAS  PubMed  Google Scholar 

  84. Isenberg JS et al (2006) CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281(36):26069–26080

    CAS  PubMed  Google Scholar 

  85. Isenberg JS et al (2009) Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress. Matrix Biol 28(2):110–119

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang X et al (2007) Continuous administration of the three thrombospondin-1 type 1 repeats recombinant protein improves the potency of therapy in an orthotopic human pancreatic cancer model. Cancer Lett 247(1):143–149

    CAS  PubMed  Google Scholar 

  87. Isenberg JS et al (2008) Thrombospondin 1 and vasoactive agents indirectly alter tumor blood flow. Neoplasia 10(8):886–896

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Csanyi G et al (2012) Thrombospondin-1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1. Arterioscler Thromb Vasc Biol 32(12):2966–2973

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ribeiro SM et al (1999) The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274(19):13586–13593

    CAS  PubMed  Google Scholar 

  90. Schultz-Cherry S et al (1995) Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem 270(13):7304–7310

    CAS  PubMed  Google Scholar 

  91. Young GD, Murphy-Ullrich JE (2004) Molecular interactions that confer latency to transforming growth factor-beta. J Biol Chem 279(36):38032–38039

    CAS  PubMed  Google Scholar 

  92. Daubon T et al (2019) Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun 10(1):1146

    PubMed  PubMed Central  Google Scholar 

  93. Guo N et al (1998) Differential roles of protein kinase C and pertussis toxin-sensitive G-binding proteins in modulation of melanoma cell proliferation and motility by thrombospondin 1. Cancer Res 58(14):3154–3162

    CAS  PubMed  Google Scholar 

  94. Takahashi K et al (2012) Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proc Natl Acad Sci U S A 109(6):1985–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lawler J et al (2001) Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol 159(5):1949–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fontana A et al (2005) Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer 116(5):686–691

    CAS  PubMed  Google Scholar 

  97. Yee KO et al (2009) The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat 114(1):85–96

    CAS  PubMed  Google Scholar 

  98. Riser BL et al (1989) Monocyte killing of human squamous epithelial cells: role for thrombospondin. Cancer Res 49(21):6123–6129

    CAS  PubMed  Google Scholar 

  99. Hawighorst T et al (2002) Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 21(52):7945–7956

    CAS  PubMed  Google Scholar 

  100. Streit M et al (2002) Systemic inhibition of tumor growth and angiogenesis by thrombospondin-2 using cell-based antiangiogenic gene therapy. Cancer Res 62(7):2004–2012

    CAS  PubMed  Google Scholar 

  101. Noh YH et al (2003) An N-terminal 80 kDa recombinant fragment of human thrombospondin-2 inhibits vascular endothelial growth factor induced endothelial cell migration in vitro and tumor growth and angiogenesis in vivo. J Invest Dermatol 121(6):1536–1543

    CAS  PubMed  Google Scholar 

  102. Rodriguez-Manzaneque JC et al (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98(22):12485–12490

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hamano Y et al (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64(5):1570–1574

    CAS  PubMed  Google Scholar 

  104. Geranmayeh MH, Rahbarghazi R, Farhoudi M (2019) Targeting pericytes for neurovascular regeneration. Cell Commun Signal 17(1):26

    PubMed  PubMed Central  Google Scholar 

  105. Seymour K et al (2010) Differential effect of nitric oxide on thrombospondin-1-, PDGF- and fibronectin-induced migration of vascular smooth muscle cells. Am J Surg 200(5):615–619

    CAS  PubMed  Google Scholar 

  106. Scheef EA, Sorenson CM, Sheibani N (2009) Attenuation of proliferation and migration of retinal pericytes in the absence of thrombospondin-1. Am J Physiol Cell Physiol 296(4):C724–C734

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Birbrair A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalas W et al (2005) Oncogenes and angiogenesis: down-regulation of thrombospondin-1 in normal fibroblasts exposed to factors from cancer cells harboring mutant ras. Cancer Res 65(19):8878–8886

    CAS  PubMed  Google Scholar 

  109. Volpert OV, Dameron KM, Bouck N (1997) Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14(12):1495–1502

    CAS  PubMed  Google Scholar 

  110. Gautam A et al (2002) Aerosol delivery of PEI-p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis. Cancer Gene Ther 9(1):28–36

    CAS  PubMed  Google Scholar 

  111. Giuriato S et al (2006) Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci U S A 103(44):16266–16271

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Isenberg JS et al (2009) Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 9(3):182–194

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang S et al (2016) Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment. Sci Transl Med 8(329):329ra34

    PubMed  PubMed Central  Google Scholar 

  114. Tuszynski GP et al (1989) The GPIIB-IIIa-like complex may function as a human melanoma cell adhesion receptor for thrombospondin. Exp Cell Res 182(2):473–481

    CAS  PubMed  Google Scholar 

  115. Tuszynski GP et al (1987) Thrombospondin, a potentiator of tumor cell metastasis. Cancer Res 47(15):4130–4133

    CAS  PubMed  Google Scholar 

  116. Murphy-Ullrich JE, Mosher DF (1987) Interactions of thrombospondin with endothelial cells: receptor-mediated binding and degradation. J Cell Biol 105(4):1603–1611

    CAS  PubMed  Google Scholar 

  117. Lawler J, Weinstein R, Hynes RO (1988) Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol 107(6 Pt 1):2351–2361

    CAS  PubMed  Google Scholar 

  118. Tuszynski GP et al (1993) Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain. J Cell Biol 120(2):513–521

    CAS  PubMed  Google Scholar 

  119. Albo D, Shinohara T, Tuszynski GP (2002) Up-regulation of matrix metalloproteinase 9 by thrombospondin 1 in gastric cancer. J Surg Res 108(1):51–60

    CAS  PubMed  Google Scholar 

  120. Giehl K, Graness A, Goppelt-Struebe M (2008) The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. Am J Physiol Renal Physiol 294(2):F407–F413

    CAS  PubMed  Google Scholar 

  121. Wang TN et al (1996) Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res 63(1):39–43

    CAS  PubMed  Google Scholar 

  122. Wang TN et al (1996) Inhibition of breast cancer progression by an antibody to a thrombospondin-1 receptor. Surgery 120(2):449–454

    CAS  PubMed  Google Scholar 

  123. Qian X et al (1997) Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res 235(2):403–412

    CAS  PubMed  Google Scholar 

  124. Arnoletti JP et al (1995) Thrombospondin and transforming growth factor-beta 1 increase expression of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in human MDA-MB-231 breast cancer cells. Cancer 76(6):998–1005

    CAS  PubMed  Google Scholar 

  125. Albo D et al (1999) Thrombospondin-1 and transforming growth factor beta-1 upregulate plasminogen activator inhibitor type 1 in pancreatic cancer. J Gastrointest Surg 3(4):411–417

    CAS  PubMed  Google Scholar 

  126. Albo D et al (1997) Thrombospondin-1 and transforming growth factor-beta l promote breast tumor cell invasion through up-regulation of the plasminogen/plasmin system. Surgery 122(2):493–499; discussion 499–500

    CAS  PubMed  Google Scholar 

  127. Guo NH et al (1992) Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proc Natl Acad Sci U S A 89(7):3040–3044

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Taraboletti G, Roberts DD, Liotta LA (1987) Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J Cell Biol 105(5):2409–2415

    CAS  PubMed  Google Scholar 

  129. Xing T et al (2017) Thrombospondin-1 production regulates the inflammatory cytokine secretion in THP-1 cells through NF-kappaB signaling pathway. Inflammation 40(5):1606–1621

    CAS  PubMed  Google Scholar 

  130. Pettersen RD et al (1999) CD47 signals T cell death. J Immunol 162(12):7031–7040

    CAS  PubMed  Google Scholar 

  131. Mateo V et al (1999) CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med 5(11):1277–1284

    CAS  PubMed  Google Scholar 

  132. Lamy L et al (2003) CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. J Biol Chem 278(26):23915–23921

    CAS  PubMed  Google Scholar 

  133. Grimbert P et al (2006) Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation. J Immunol 177(6):3534–3541

    CAS  PubMed  Google Scholar 

  134. Fang LL et al (2015) Thrombospondin 1 modulates monocyte properties to suppress intestinal mucosal inflammation. J Innate Immun 7(6):601–611

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lopez-Dee ZP et al (2015) Thrombospondin-1 in a murine model of colorectal carcinogenesis. PLoS One 10(10):e0139918

    PubMed  PubMed Central  Google Scholar 

  136. Peinado H et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5):302–317

    CAS  PubMed  Google Scholar 

  137. Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic niche. Cancer Cell 30(5):668–681

    CAS  PubMed  Google Scholar 

  138. Kang SA et al (2015) Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis. Mol Ther 23(6):1044–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19:1450

    CAS  PubMed  Google Scholar 

  140. Rofstad EK, Graff BA (2001) Thrombospondin-1-mediated metastasis suppression by the primary tumor in human melanoma xenografts. J Invest Dermatol 117(5):1042–1049

    CAS  PubMed  Google Scholar 

  141. Catena R et al (2013) Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 3(5):578–589

    CAS  PubMed  PubMed Central  Google Scholar 

  142. El Rayes T et al (2015) Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of tsp-1. Proc Natl Acad Sci U S A 112(52):16000–16005

    PubMed  PubMed Central  Google Scholar 

  143. Aguirre-Ghiso JA, Sosa MS (2018) Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annual Review of Cancer Biology 2(1):377–393

    Google Scholar 

  144. Ghajar CM et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Armant M et al (1999) CD47 ligation selectively downregulates human interleukin 12 production. J Exp Med 190(8):1175–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Stein EV et al (2016) Secreted Thrombospondin-1 regulates macrophage interleukin-1beta production and activation through CD47. Sci Rep 6:19684

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao Y et al (2014) Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury. Mucosal Immunol 7(2):440–448

    CAS  PubMed  Google Scholar 

  148. Csanyi G et al (2017) CD47 and Nox1 mediate dynamic fluid-phase macropinocytosis of native LDL. Antioxid Redox Signal 26(16):886–901

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lawler J et al (1998) Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 101(5):982–992

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Li Y et al (2011) Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model. PLoS One 6(10):e26656

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Futagami Y et al (2007) Role of thrombospondin-1 in T cell response to ocular pigment epithelial cells. J Immunol 178(11):6994–7005

    CAS  PubMed  Google Scholar 

  152. Crawford SE et al (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93(7):1159–1170

    CAS  PubMed  Google Scholar 

  153. Mir FA, Contreras-Ruiz L, Masli S (2015) Thrombospondin-1-dependent immune regulation by transforming growth factor-beta2-exposed antigen-presenting cells. Immunology 146(4):547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Molckovsky A, Siu LL (2008) First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American Society of Clinical Oncology meeting. J Hematol Oncol 1(1):20

    PubMed  PubMed Central  Google Scholar 

  155. Kang SY et al (2009) Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and tsp-1. Proc Natl Acad Sci U S A 106(29):12115–12120

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramchandani, D., Mittal, V. (2020). Thrombospondin in Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1272. Springer, Cham. https://doi.org/10.1007/978-3-030-48457-6_8

Download citation

Publish with us

Policies and ethics