Skip to main content

Sickle Cell Disease in the Adolescent Female

  • Chapter
  • First Online:
Hematology in the Adolescent Female
  • 414 Accesses

Abstract

Sickle cell disease (SCD) is an inherited blood disorder that causes affected individuals to produce an abnormal hemoglobin that results in frequent pain events, organ damage, and early mortality. Disease- specific treatments include hydroxyurea, L-glutamine, voxelator, crizanlizumab, and blood transfusions. Hematopoietic stem cell transplant is curative but limited due to a requirement for a matched-related donor in most cases. Adolescence can be a difficult time for females affected by SCD. Pain events may increase in frequency, due to decline in protective fetal hemoglobin levels, medication noncompliance, hormone effects, or progression of the chronic illness. Some patients may develop chronic, daily pain in adolescence, from repeated pain crises, or opioid-induced hyperalgesia. Transitioning from pediatric to adult providers may be a source of anxiety, and developing independence from parents is a challenge. Gynecological issues include a need to avoid estrogen containing birth control products due to the hypercoagulable state of SCD, difficulties in diagnosing dysfunctional uterine bleeding, and the high-risk nature of pregnancy in an individual with SCD. Individuals with SCD have high rates of psychological complications, including depression, anxiety, and body image dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weatherall D, Hofman K, Rodgers G, Ruffin J, Hrynkow S. A case for developing North-South partnerships for research in sickle cell disease. Blood. 2005;105:921–3.

    CAS  PubMed  Google Scholar 

  2. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330:1639–44.

    CAS  PubMed  Google Scholar 

  3. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376:2018–31.

    CAS  PubMed  Google Scholar 

  4. Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol. 1998;11:1–51.

    CAS  PubMed  Google Scholar 

  5. Allison AC. The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria. Trans R Soc Trop Med Hyg. 1954;48:312–8.

    CAS  PubMed  Google Scholar 

  6. Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337:762–9.

    CAS  PubMed  Google Scholar 

  7. Brittenham GM, Schechter AN, Noguchi CT. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood. 1985;65:183–9.

    CAS  PubMed  Google Scholar 

  8. Ballas SK, Dover GJ, Charache S. Effect of hydroxyurea on the rheological properties of sickle erythrocytes in vivo. Am J Hematol. 1989;32:104–11.

    CAS  PubMed  Google Scholar 

  9. Frenette PS. Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol. 2002;9:101–6.

    PubMed  Google Scholar 

  10. Reiter CD, Wang X, Tanus-Santos JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8:1383–9.

    CAS  PubMed  Google Scholar 

  11. Nouraie M, Lee JS, Zhang Y, et al. The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica. 2013;98:464–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013;3:a011783.

    PubMed  PubMed Central  Google Scholar 

  13. Serjeant GR. Natural history and determinants of clinical severity of sickle cell disease. Curr Opin Hematol. 1995;2:103–8.

    CAS  PubMed  Google Scholar 

  14. Falusi AG, Olatunji PO. Effects of alpha thalassaemia and haemoglobin F (HbF) level on the clinical severity of sickle-cell anaemia. Eur J Haematol. 1994;52:13–5.

    CAS  PubMed  Google Scholar 

  15. Platt OS, Thorington BD, Brambilla DJ, et al. Pain in sickle cell disease. Rates and risk factors. N Engl J Med. 1991;325:11–6.

    CAS  PubMed  Google Scholar 

  16. Steinberg MH, Voskaridou E, Kutlar A, et al. Concordant fetal hemoglobin response to hydroxyurea in siblings with sickle cell disease. Am J Hematol. 2003;72:121–6.

    CAS  PubMed  Google Scholar 

  17. Perrine RP, Brown MJ, Clegg JB, Weatherall DJ, May A. Benign sickle-cell anaemia. Lancet. 1972;2:1163–7.

    CAS  PubMed  Google Scholar 

  18. Serjeant GR, Ceulaer CD, Lethbridge R, Morris J, Singhal A, Thomas PW. The painful crisis of homozygous sickle cell disease: clinical features. Br J Haematol. 1994;87:586–91.

    CAS  PubMed  Google Scholar 

  19. Niihara Y, Miller ST, Kanter J, et al. A phase 3 trial of l-glutamine in sickle cell disease. N Engl J Med. 2018;379:226–35.

    CAS  PubMed  Google Scholar 

  20. Gil KM, Carson JW, Porter LS, Scipio C, Bediako SM, Orringer E. Daily mood and stress predict pain, health care use, and work activity in African American adults with sickle-cell disease. Health Psychol. 2004;23:267–74.

    PubMed  Google Scholar 

  21. Jones S, Duncan ER, Thomas N, et al. Windy weather and low humidity are associated with an increased number of hospital admissions for acute pain and sickle cell disease in an urban environment with a maritime temperate climate. Br J Haematol. 2005;131:530–3.

    PubMed  Google Scholar 

  22. Resar LM, Oski FA. Cold water exposure and vaso-occlusive crises in sickle cell anemia. J Pediatr. 1991;118:407–9.

    CAS  PubMed  Google Scholar 

  23. Darbari DS, Ballas SK, Clauw DJ. Thinking beyond sickling to better understand pain in sickle cell disease. Eur J Haematol. 2014;93:89–95.

    PubMed  Google Scholar 

  24. Hollins M, Stonerock GL, Kisaalita NR, Jones S, Orringer E, Gil KM. Detecting the emergence of chronic pain in sickle cell disease. J Pain Symptom Manag. 2012;43:1082–93.

    Google Scholar 

  25. de Abood M, de Castillo Z, Guerrero F, Espino M, Austin KL. Effect of Depo-Provera or Microgynon on the painful crises of sickle cell anemia patients. Contraception. 1997;56:313–6.

    PubMed  Google Scholar 

  26. De Ceulaer K, Gruber C, Hayes R, Serjeant GR. Medroxyprogesterone acetate and homozygous sickle-cell disease. Lancet. 1982;2:229–31.

    PubMed  Google Scholar 

  27. Baum KF, Dunn DT, Maude GH, Serjeant GR. The painful crisis of homozygous sickle cell disease. A study of the risk factors. Arch Intern Med. 1987;147:1231–4.

    CAS  PubMed  Google Scholar 

  28. Haddad LB, Curtis KM, Legardy-Williams JK, Cwiak C, Jamieson DJ. Contraception for individuals with sickle cell disease: a systematic review of the literature. Contraception. 2012;85:527–37.

    PubMed  Google Scholar 

  29. Ballas SK, Lusardi M. Hospital readmission for adult acute sickle cell painful episodes: frequency, etiology, and prognostic significance. Am J Hematol. 2005;79:17–25.

    PubMed  Google Scholar 

  30. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312:1033–48.

    PubMed  Google Scholar 

  31. Arout CA, Edens E, Petrakis IL, Sofuoglu M. Targeting opioid-induced hyperalgesia in clinical treatment: neurobiological considerations. CNS Drugs. 2015;29:465–86.

    CAS  PubMed  Google Scholar 

  32. Aslaksen PM, Lyby PS. Fear of pain potentiates nocebo hyperalgesia. J Pain Res. 2015;8:703–10.

    PubMed  PubMed Central  Google Scholar 

  33. Bannister K. Opioid-induced hyperalgesia: where are we now? Curr Opin Support Palliat Care. 2015;9:116–21.

    PubMed  Google Scholar 

  34. Ballas SK, Darbari DS. Neuropathy, neuropathic pain, and sickle cell disease. Am J Hematol. 2013;88:927–9.

    PubMed  Google Scholar 

  35. Brandow AM, Farley RA, Dasgupta M, Hoffmann RG, Panepinto JA. The use of neuropathic pain drugs in children with sickle cell disease is associated with older age, female sex, and longer length of hospital stay. J Pediatr Hematol Oncol. 2015;37:10–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Castro O, Brambilla DJ, Thorington B, et al. The acute chest syndrome in sickle cell disease: incidence and risk factors. The cooperative study of sickle cell disease. Blood. 1994;84:643–9.

    CAS  PubMed  Google Scholar 

  37. Howard J, Hart N, Roberts-Harewood M, et al. Guideline on the management of acute chest syndrome in sickle cell disease. Br J Haematol. 2015;169:492–505.

    PubMed  Google Scholar 

  38. Kumar R, Stanek J, Creary S, Dunn A, O’Brien SH. Prevalence and risk factors for venous thromboembolism in children with sickle cell disease: an administrative database study. Blood Adv. 2018;2:285–91.

    PubMed  PubMed Central  Google Scholar 

  39. Walker TM, Hambleton IR, Serjeant GR. Gallstones in sickle cell disease: observations from The Jamaican Cohort study. J Pediatr. 2000;136:80–5.

    CAS  PubMed  Google Scholar 

  40. Brousse V, Buffet P, Rees D. The spleen and sickle cell disease: the sick(led) spleen. Br J Haematol. 2014;166:165–76.

    PubMed  Google Scholar 

  41. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–94.

    CAS  PubMed  Google Scholar 

  42. DeBaun MR, Gordon M, McKinstry RC, et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N Engl J Med. 2014;371:699–710.

    PubMed  PubMed Central  Google Scholar 

  43. Adams RJ, Brambilla DJ, Granger S, et al. Stroke and conversion to high risk in children screened with transcranial Doppler ultrasound during the STOP study. Blood. 2004;103:3689–94.

    CAS  PubMed  Google Scholar 

  44. Adamkiewicz TV, Sarnaik S, Buchanan GR, et al. Invasive pneumococcal infections in children with sickle cell disease in the era of penicillin prophylaxis, antibiotic resistance, and 23-valent pneumococcal polysaccharide vaccination. J Pediatr. 2003;143:438–44.

    PubMed  Google Scholar 

  45. Ware RE, Davis BR, Schultz WH, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387:661–70.

    CAS  PubMed  Google Scholar 

  46. Charache S. Mechanism of action of hydroxyurea in the management of sickle cell anemia in adults. Semin Hematol. 1997;34:15–21.

    CAS  PubMed  Google Scholar 

  47. Noguchi CT, Rodgers GP, Serjeant G, Schechter AN. Levels of fetal hemoglobin necessary for treatment of sickle cell disease. N Engl J Med. 1988;318:96–9.

    CAS  PubMed  Google Scholar 

  48. Jiang J, Jordan SJ, Barr DP, Gunther MR, Maeda H, Mason RP. In vivo production of nitric oxide in rats after administration of hydroxyurea. Mol Pharmacol. 1997;52:1081–6.

    CAS  PubMed  Google Scholar 

  49. Green NS, Manwani D, Qureshi M, Ireland K, Sinha A, Smaldone AM. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatr Blood Cancer. 2016;63:2146–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood. 2010;115:3447–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsieh MM, Kang EM, Fitzhugh CD, et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med. 2009;361:2309–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. King A, Shenoy S. Evidence-based focused review of the status of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood. 2014;123:3089–94; quiz 210.

    CAS  PubMed  Google Scholar 

  53. Ribeil JA, Hacein-Bey-Abina S, Payen E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376:848–55.

    CAS  PubMed  Google Scholar 

  54. Serjeant GR, Singhal A, Hambleton IR. Sickle cell disease and age at menarche in Jamaican girls: observations from a cohort study. Arch Dis Child. 2001;85:375–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Platt OS, Rosenstock W, Espeland MA. Influence of sickle hemoglobinopathies on growth and development. N Engl J Med. 1984;311:7–12.

    CAS  PubMed  Google Scholar 

  56. Deligeoroglou E, Karountzos V, Creatsas G. Abnormal uterine bleeding and dysfunctional uterine bleeding in pediatric and adolescent gynecology. Gynecol Endocrinol. 2013;29:74–8.

    PubMed  Google Scholar 

  57. Boga C, Ozdogu H. Pregnancy and sickle cell disease: a review of the current literature. Crit Rev Oncol Hematol. 2016;98:364–74.

    PubMed  Google Scholar 

  58. Ghafuri DL, Stimpson SJ, Day ME, James A, DeBaun MR, Sharma D. Fertility challenges for women with sickle cell disease. Expert Rev Hematol. 2017;10:891–901.

    CAS  PubMed  Google Scholar 

  59. Reece AS, Thomas MR, Norman A, Hulse GK. Dramatic acceleration of reproductive aging, contraction of biochemical fecundity and healthspan-lifespan implications of opioid-induced endocrinopathy-FSH/LH ratio and other interrelationships. Reprod Toxicol. 2016;66:20–30.

    CAS  PubMed  Google Scholar 

  60. Reid RL, Westhoff C, Mansour D, et al. Oral contraceptives and venous thromboembolism consensus opinion from an international workshop held in Berlin, Germany in December 2009. J Fam Plann Reprod Health Care. 2010;36:117–22.

    PubMed  Google Scholar 

  61. Legardy JK, Curtis KM. Progestogen-only contraceptive use among women with sickle cell anemia: a systematic review. Contraception. 2006;73:195–204.

    CAS  PubMed  Google Scholar 

  62. Badawy SM, Thompson AA, Liem RI. Beliefs about hydroxyurea in youth with sickle cell disease. Hematol Oncol Stem Cell Ther. 2018;11:142–8.

    PubMed  Google Scholar 

  63. Hemker BG, Brousseau DC, Yan K, Hoffmann RG, Panepinto JA. When children with sickle-cell disease become adults: lack of outpatient care leads to increased use of the emergency department. Am J Hematol. 2011;86:863–5.

    PubMed  Google Scholar 

  64. Blinder MA, Vekeman F, Sasane M, Trahey A, Paley C, Duh MS. Age-related treatment patterns in sickle cell disease patients and the associated sickle cell complications and healthcare costs. Pediatr Blood Cancer. 2013;60:828–35.

    PubMed  Google Scholar 

  65. Blinder MA, Duh MS, Sasane M, Trahey A, Paley C, Vekeman F. Age-related emergency department reliance in patients with sickle cell disease. J Emerg Med. 2015;49:513–22. e1.

    PubMed  Google Scholar 

  66. Travis K, Wood A, Yeh P, et al. Pediatric to adult transition in sickle cell disease: survey results from young adult patients. Acta Haematol. 2020;143(2):163–75.

    CAS  PubMed  Google Scholar 

  67. Jerrell JM, Tripathi A, McIntyre RS. Prevalence and treatment of depression in children and adolescents with sickle cell disease: a retrospective cohort study. Prim Care Companion CNS Disord. 2011;13(2):e1–7.

    Google Scholar 

  68. Jonassaint CR, Jones VL, Leong S, Frierson GM. A systematic review of the association between depression and health care utilization in children and adults with sickle cell disease. Br J Haematol. 2016;174:136–47.

    PubMed  Google Scholar 

  69. Graves JK, Hodge C, Jacob E. Depression, anxiety, and quality of life in children and adolescents with sickle cell disease. Pediatr Nurs. 2016;42:113–9, 44.

    PubMed  Google Scholar 

  70. Bhatt-Poulose K, James K, Reid M, Harrison A, Asnani M. Increased rates of body dissatisfaction, depressive symptoms, and suicide attempts in Jamaican teens with sickle cell disease. Pediatr Blood Cancer. 2016;63:2159–66.

    PubMed  Google Scholar 

  71. Jacob E. The pain experience of patients with sickle cell anemia. Pain Manage Nurs. 2001;2:74–83.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien Sheehan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Itzep, N., Sheehan, V. (2020). Sickle Cell Disease in the Adolescent Female. In: Srivaths, L. (eds) Hematology in the Adolescent Female. Springer, Cham. https://doi.org/10.1007/978-3-030-48446-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48446-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48445-3

  • Online ISBN: 978-3-030-48446-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics