Skip to main content

Black-Box Optimization in Railway Simulations

  • Conference paper
  • First Online:
Operations Research Proceedings 2019

Part of the book series: Operations Research Proceedings ((ORP))

  • 1496 Accesses

Abstract

In railway timetabling one objective is that the timetable is robust against minor delays. One way to compute the robustness of a timetable is to simulate it with some predefined delays that occur and are propagated within the simulation. These simulations typically are complex and do not provide any information on the derivative of an objective function such as the punctuality. Therefore, we propose black-box optimization techniques that adjust a given timetable so that the expected punctuality is maximized while other objectives such as the number of operating trains or the travel times are fixed. As an example method for simulation, we propose a simple Markov chain model directly derived from real-world data. Since every run in any simulation framework is computationally expensive, we focus on optimization techniques that find good solutions with only few evaluations of the objective function. We study different black-box optimization techniques, some including expert knowledge and some are self-learning, and provide convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury S.J.: Simulation optimization: a review of algorithms and applications. CoRR abs/1706.08591 (2017). http://arxiv.org/abs/1706.08591

  2. Curchod A.: Analyse de la Stabilité d’horaires Ferroviaires Cadencés sur un réseau maillé: Bedienungshandbuch. FASTA II, Lausanne (2007)

    Google Scholar 

  3. Gong, G., Liu, Y., Qian M.: An adaptive simulated annealing algorithm. Stoch. Proc. Appl. 94(1), 95–103 (2001). https://doi.org/10.1016/S0304-4149(01)00082-5

    Google Scholar 

  4. Hauck, F., Kliewer, N.: Big data analytics im bahnverkehr. HMD Praxis der Wirtschaftsinformatik 56, 1041–1052 (2019). https://doi.org/10.1365/s40702-019-00524-7

    Google Scholar 

  5. Kecman, P., Corman, F., Meng, L.: Train delay evolution as a stochastic process. In: Tomii, N, Barkan, C.P.L., et al. (eds.) Proceedings of the 6th International Conference on Railway Operations Modelling and Analysis. IAROR (2015)

    Google Scholar 

  6. Nachtigall, K.: Periodic Network Optimization and Fixed Interval Timetables: Habilitation. Deutsches Zentrum für Luft- und Raumfahrt, Braunschweig (1998)

    Google Scholar 

  7. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning (PMLR), vol. 28, pp. 1139–1147, Atlanta (2013). http://proceedings.mlr.press/v28/sutskever13.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Reisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reisch, J., Kliewer, N. (2020). Black-Box Optimization in Railway Simulations. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_87

Download citation

Publish with us

Policies and ethics