Skip to main content

Magnetic Resonance Angiography

  • Chapter
  • First Online:
Neuroimaging Techniques in Clinical Practice

Abstract

In the last 20 years, magnetic resonance angiography (MRA) has emerged as a valid tool for vascular imaging, augmented by improvements made in MR software and hardware. MRA has proven to be a safe and non-invasive vascular imaging method, which provides images similar to those obtained by classical catheter angiography. MRA methods can be subdivided into two broad categories: DARK BLOOD imaging and BRIGHT BLOOD imaging techniques.

Dark blood imaging techniques render vessels black and are especially useful when the focus of interest is not the vessel lumen, but the vessel wall. Bright blood imaging refers to MRA techniques, which enhance the signal intensity of blood within the vessel lumen. Bright blood imaging can be further subdivided into contrast-enhanced (CE) MRA and non-contrast enhanced (non-CE) MRA. CE-MRA relies on the paramagnetic properties of an intravenously injected gadolinium-based contrast agent, which shortens the T1-relaxation time of blood and renders vessels bright on T1-weighted sequences. Conversely, non-CE MRA on the other hand relies entirely on the intrinsic MR properties of flowing blood.

Several variations are possible and only those techniques that are relevant to the field of neuroradiology will be discussed in this chapter: CE-MRA, time-of-flight (TOF) MRA, phase-contrast (PC) MRA, arterial spin labelling (ASL) MRA and vessel wall (VW) imaging. We will conclude with an overview of clinical applications and a clinical case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASL:

Arterial spin labelling

AVM:

Arteriovenous malformation

CASL:

Continuous arterial spin labelling

CBF:

Cerebral blood flow

CE:

Contrast enhanced

CSF:

Cerebrospinal fluid

3D-MPRAGE:

3D-magnetization prepared rapid acquisition gradient echo

DANTE:

Delay alternating with nutation for tailored excitation

dAVF:

Dural arteriovenous fistula

DSC:

Dynamic susceptibility contrast (MRI)

GRE:

Gradient-recalled echo

MOTSA:

Multiple overlapping thin slab acquisition

MRA:

Magnetic resonance angiography

MT:

Magnetization transfer

Non-CE:

Non-contrast enhanced

PASL:

Pulsed arterial spin labelling

PC:

Phase contrast (angiography)

pCASL:

Pseudocontinuous arterial spin labelling

PET:

Positron emission tomography

PLD:

Post-labelling delay

RF:

Radiofrequency (pulse)

SAR:

Specific absorption rate

SNR:

Signal-to-noise ratio

SPECT:

Single-photon emission tomography

TE:

Echo time

TOF:

Time-of-flight (angiography)

TONE:

Tilted optimized non-saturating excitation

TR:

Repetition time

TSE:

Turbo spin echo

VENC:

Velocity encoding (parameter)

VS-ASL:

Velocity selective arterial spin labelling

VW:

Vessel wall (imaging)

References

  1. Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology. 2008;248(1):20–43.

    Article  PubMed  Google Scholar 

  2. Ivancevic MK, Geerts L, Weadock WJ, Chenevert TL. Technical principles of MR angiography methods. Magn Reson Imaging Clin N Am. 2009;17(1):1–11.

    Google Scholar 

  3. Prince MR. Gadolinium-enhanced MR aortography. Radiology. 1994;191(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  4. Özsarlak Ö, Van Goethem JW, Maes M, Parizel PM. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology. 2004;46(12):955–72.

    Article  PubMed  Google Scholar 

  5. Riederer SJ, Stinson EG, Weavers PT. Technical aspects of contrast-enhanced MR angiography: current status and new applications. Magn Reson Med Sci. 2018;17(1):3–12.

    Article  PubMed  Google Scholar 

  6. Saloner D. The AAPM/RSNA physics tutorial for residents. An introduction to MR angiography. Radiographics. 1995;15(2):453–65.

    Article  CAS  PubMed  Google Scholar 

  7. Blatter DD, Parker DL, Robison RO. Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility. Radiology. 1991;179(3):805–11.

    Article  CAS  PubMed  Google Scholar 

  8. Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol. 2000;11(6):1107–18.

    Google Scholar 

  9. Bakker CJ, Hoogeveen RM, Viergever MA. Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. J Magn Reson Imaging. 1999;9(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  10. Wildermuth S, Debatin JF, Huisman TA, Leung DA, McKinnon GC. 3D phase contrast EPI MR angiography of the carotid arteries. J Comput Assist Tomogr. 1995;19(6):871–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dumoulin CL. Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am. 1995;3(3):399–411.

    CAS  PubMed  Google Scholar 

  12. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology. 1998;208(2):410–6.

    Article  CAS  PubMed  Google Scholar 

  13. Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol. 2010;2(10):384–98.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, et al. Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla. Magn Reson Med. 2002;48(2):242–54.

    Article  PubMed  Google Scholar 

  15. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.

    Article  Google Scholar 

  16. Haller S, Zaharchuk G, Thomas DL, Lovblad K-O, Barkhof F, Golay X. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology. 2016;281(2):337–56.

    Article  PubMed  Google Scholar 

  17. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc. 2007;13(03):526–38.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. Am J Neuroradiol. 2017;38(2):218–29.

    Article  CAS  PubMed  Google Scholar 

  19. Viessmann O, Li L, Benjamin P, Jezzard P. T2-weighted intracranial vessel wall imaging at 7 tesla using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE). Magn Reson Med. 2017;77(2):655–63.

    Article  PubMed  Google Scholar 

  20. Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology. 2018;286(1):12–28.

    Article  PubMed  Google Scholar 

  21. Barnett HJM, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med. 1998;339(20):1415–25.

    Article  CAS  PubMed  Google Scholar 

  22. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet. 1998;351(9113):1379–87.

    Google Scholar 

  23. Townsend TC, Saloner D, Pan XM, Rapp JH. Contrast material-enhanced MRA overestimates severity of carotid stenosis, compared with 3D time-of-flight MRA. J Vasc Surg. 2003;38(1):36–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Marie Parizel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peters, B., Dekeyzer, S., Nikoubashman, O., Parizel, P.M. (2020). Magnetic Resonance Angiography. In: Mannil, M., Winklhofer, SX. (eds) Neuroimaging Techniques in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-48419-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48419-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48418-7

  • Online ISBN: 978-3-030-48419-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics