Skip to main content

Restricted or Liberal Fluid Therapy

  • Chapter
  • First Online:
Book cover Perioperative Fluid Management

Abstract

While fluid deprivation and fluid overdose resulting from negligence or misinformed prescription are surely harmful, observations and experiments do not point to fluid therapy as a significant determinant of patient outcomes from major surgery. We can take steps to regulate (a) the extracellular fluid volume and (b) the intravascular—extravascular distribution of the extracellular fluid. On point (a), maintaining a positive input—output fluid balance of 1 to 2 liters on the day of surgery seems to be optimal for modern minimally-invasive surgery. On point (b) there are two interdependent extracellular fluid circulations, of blood and of interstitial fluid. The determinant of the equilibrium between plasma volume and interstitial volume are the transendothelial filtration rate (Jv) of fluid from the blood circulation to the interstitial circulation and the pre-nodal lymph flow rate (Qlymph). Both are affected by anesthesia and by vasoactive agents. We can minimise post-operative edema (harmful interstitial fluid accumulation) and optimize intravascular fluid volume by taking steps to balance fluid input, fluid output, Jv and Qlymph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boling EA, Davis JM, Mcmurrey JD, Moore FD. The evaluation of body composition in surgical disease processes utilizing a method for the simultaneous determination of red blood cell volume, plasma volume, blood volume, total body water, extracellular water and total exchangeable chloride, sodium and potassium. Surg Forum. 1956;6:14–8.

    CAS  PubMed  Google Scholar 

  2. Moore FD. Common patterns of water and electrolyte change in injury, surgery and disease. N Engl J Med. 1958;258:277–85.

    Article  CAS  PubMed  Google Scholar 

  3. Shires T, Williams J, Brown F. Acute change in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrico CJ, Coln CD, Lightfoot SA, Allsman A, Shires GT. Extracellular fluid volume replacement in hemorrhagic shock. Surg Forum. 1963;14:10–2.

    CAS  PubMed  Google Scholar 

  5. Carrico CJ, Coln CD, Shires GT. Salt administration during surgery. Surg Forum. 1966;17:59–61.

    CAS  PubMed  Google Scholar 

  6. Moore FD, Shires GT. Moderation. Anesth Analg. 1968;47:506–8.

    CAS  PubMed  Google Scholar 

  7. Twigley AJ, Hillman KM. The end of the crystalloid era? A new approach to peri-operative fluid administration. Anaesthesia. 1985;40:860–71.

    Article  CAS  PubMed  Google Scholar 

  8. Vercueil A, Grocott MP, Mythen MG. Physiology, pharmacology, and rationale for colloid administration for the maintenance of effective hemodynamic stability in critically ill patients. Transfus Med Rev. 2005;19:93–109.

    Article  PubMed  Google Scholar 

  9. Spital A, Sterns RD. The paradox of sodium’s volume of distribution. Why an extracellular solute appears to distribute over total body water. Arch Intern Med. 1989;149:1255–7.

    Article  CAS  PubMed  Google Scholar 

  10. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.

    Article  CAS  PubMed  Google Scholar 

  11. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557:889–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levick JR. Revision of the Starling principle: new views of tissue fluid balance. J Physiol. 2004;557:704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    Article  CAS  PubMed  Google Scholar 

  14. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    Article  CAS  PubMed  Google Scholar 

  15. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  16. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–95.

    Article  CAS  PubMed  Google Scholar 

  17. Glassford NJ, Eastwood GM, Bellomo R. Physiological changes after fluid bolus therapy in sepsis: a systematic review of contemporary data. Crit Care. 2014;18:696.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aman J, Groeneveld AB, van Nieuw Amerongen GP. Predictors of pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia*. Crit Care Med. 2012;40:793–9.

    Article  PubMed  Google Scholar 

  19. Woodcock TM, Woodcock TE. Revised Starling equation predicts pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia. Crit Care Med. 2012;40:2741–2. author reply 2742

    Article  PubMed  Google Scholar 

  20. Vincent JL, Russell JA, Jacob M, Martin G, Guidet B, Wernerman J, et al. Albumin administration in the acutely ill: what is new and where next? Crit Care. 2014;18:231.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Finfer S, Myburgh J, Bellomo R. Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol. 2018;14:541–57.

    Article  PubMed  Google Scholar 

  22. Svensén C, Hahn RG. Volume kinetics of Ringer solution, dextran 70, and hypertonic saline in male volunteers. Anesthesiology. 1997;87:204–12.

    Article  PubMed  Google Scholar 

  23. Hahn RG. Volume kinetics for infusion fluids. Anesthesiology. 2010;113:470–81.

    Article  PubMed  Google Scholar 

  24. Hahn RG, Drobin D, Zdolsek J. Distribution of crystalloid fluid changes with the rate of infusion: a population-based study. Acta Anaesthesiol Scand. 2016;60(5):569–78.

    Article  CAS  PubMed  Google Scholar 

  25. Woodcock T. Fluid physiology: a handbook for anaesthesia and critical care practice. Newcastle upon Tyne: Cambridge Scholars; 2019.

    Google Scholar 

  26. Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care. 2012;16:R86.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cope O, Litwin SB. Contribution of the lymphatic system to the replenishment of the plasma volume following a hemorrhage. Ann Surg. 1962;156:655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore FD, Dagher FJ, Boyden CM, Lee CJ, Lyons JH. Hemorrhage in normal man. I. distribution and dispersal of saline infusions following acute blood loss: clinical kinetics of blood volume support. Ann Surg. 1966;163:485–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adamson J, Hillman RS. Blood volume and plasma protein replacement following acute blood loss in normal man. JAMA. 1968;205:609–12.

    Article  CAS  PubMed  Google Scholar 

  30. Boulanger BR, Lloyd SJ, Walker M, Johnston MG. Intrinsic pumping of mesenteric lymphatics is increased after hemorrhage in awake sheep. Circ Shock. 1994;43:95–101.

    CAS  PubMed  Google Scholar 

  31. Zdolsek M, Hahn RG, Zdolsek JH. Recruitment of extravascular fluid by hyperoncotic albumin. Acta Anaesthesiol Scand. 2018;62:1255–60.

    Article  CAS  PubMed  Google Scholar 

  32. Akata T. General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology. 2007;106:365–91.

    Article  PubMed  Google Scholar 

  33. Venkatesan S, Myles PR, Manning HJ, et al. Cohort study of preoperative blood pressure and risk of 30-day mortality after elective non-cardiac surgery. Br J Anaesth. 2017;119:65–77.

    Article  CAS  PubMed  Google Scholar 

  34. Sweitzer BJ, Howell SJ. The Goldilocks principle as it applies to perioperative blood pressure: what is too high, too low, or just right [editorial]. Br J Anaesth. 2017;119(1):7.

    Article  CAS  PubMed  Google Scholar 

  35. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92:1005–60.

    Article  CAS  PubMed  Google Scholar 

  36. Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxford). 2018;222:13006.

    Article  CAS  Google Scholar 

  37. Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011;22:2166–81.

    Article  CAS  PubMed  Google Scholar 

  38. Curry FR, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol (Oxford). 2013;207:628–49.

    Article  CAS  Google Scholar 

  39. Nielsen OM, Engell HC. Changes in extracellular sodium content after elective abdominal vascular surgery. Acta Chir Scand. 1986;152:587–91.

    CAS  PubMed  Google Scholar 

  40. Hessels L, Oude Lansink A, Renes MH, et al. Postoperative fluid retention after heart surgery is accompanied by a strongly positive sodium balance and a negative potassium balance. Phys Rep. 2016;4(10):e12807.

    Article  CAS  Google Scholar 

  41. Hessels L, Oude Lansink-Hartgring A, Zeillemaker-Hoekstra M, Nijsten MW. Estimation of sodium and chloride storage in critically ill patients: a balance study. Ann Intensive Care. 2018;8:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barton A, Fuller R, Dudley N. Using subcutaneous fluids to rehydrate older people: current practices and future challenges. QJM. 2004;97:765–8.

    Article  CAS  PubMed  Google Scholar 

  44. Monk R. Wittgenstein: the duty of genius. London: Penguin; 1990.

    Google Scholar 

  45. Vineis P. Methodological insights: fuzzy sets in medicine. J Epidemiol Community Health. 2008;62:273–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009;361:1368–75.

    Article  CAS  PubMed  Google Scholar 

  47. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250:187–96.

    Article  PubMed  Google Scholar 

  49. Peters EG, Smeets BJJ, Nors J, et al. Perioperative lipid-enriched enteral nutrition versus standard care in patients undergoing elective colorectal surgery (SANICS II): a multicentre, double-blind, randomised controlled trial. Lancet Gastroenterol Hepatol. 2018;3:242–51.

    Article  PubMed  Google Scholar 

  50. Rulli F, Stefani M, Torba M, et al. Intraoperative continuous intestinal loop warming technique A prospective randomised trial. Ann Ital Chir. 2017;88:237–41.

    PubMed  Google Scholar 

  51. Varadhan KK, Lobo DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc. 2010;69:488–98.

    Article  PubMed  Google Scholar 

  52. Chong JU, Nam S, Kim HJ, et al. Exploration of fluid dynamics in perioperative patients using bioimpedance analysis. J Gastrointest Surg. 2016;20:1020–7.

    Article  PubMed  Google Scholar 

  53. Gupta R, Gan TJ. Peri-operative fluid management to enhance recovery. Anaesthesia. 2016;71(Suppl 1):40–5.

    Article  PubMed  Google Scholar 

  54. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much. Br J Anaesth. 2012;109:69–79.

    Article  CAS  PubMed  Google Scholar 

  55. Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. MacKay G, Fearon K, McConnachie A, Serpell MG, Molloy RG, O’Dwyer PJ. Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg. 2006;93:1469–74.

    Article  CAS  PubMed  Google Scholar 

  57. Holte K, Klarskov B, Christensen DS, Lund C, Nielsen KG, Bie P, et al. Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg. 2004;240:892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Holte K, Foss NB, Andersen J, Valentiner L, Lund C, Bie P, et al. Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth. 2007;99:500–8.

    Article  CAS  PubMed  Google Scholar 

  59. Holte K, Kristensen BB, Valentiner L, Foss NB, Husted H, Kehlet H. Liberal versus restrictive fluid management in knee arthroplasty: a randomized, double-blind study. Anesth Analg. 2007;105:465–74.

    Article  PubMed  Google Scholar 

  60. Aga Z, Machina M, McCluskey SA. Greater intravenous fluid volumes are associated with prolonged recovery after colorectal surgery: a retrospective cohort study. Br J Anaesth. 2016;116:804–10.

    Article  CAS  PubMed  Google Scholar 

  61. Janvrin SB, Davies G, Greenhalgh RM. Postoperative deep vein thrombosis caused by intravenous fluids during surgery. Br J Surg. 1980;67:690–3.

    Article  CAS  PubMed  Google Scholar 

  62. Nossaman VE, Richardson WS, Wooldridge JB, Nossaman BD. Role of intraoperative fluids on hospital length of stay in laparoscopic bariatric surgery: a retrospective study in 224 consecutive patients. Surg Endosc. 2015;29:2960–9.

    Article  PubMed  Google Scholar 

  63. Lai CW, Starkie T, Creanor S, Struthers RA, Portch D, Erasmus PD, et al. Randomized controlled trial of stroke volume optimization during elective major abdominal surgery in patients stratified by aerobic fitness. Br J Anaesth. 2015;115:578–89.

    Article  CAS  PubMed  Google Scholar 

  64. Wuethrich PY, Burkhard FC, Thalmann GN, Stueber F, Studer UE. Restrictive deferred hydration combined with preemptive norepinephrine infusion during radical cystectomy reduces postoperative complications and hospitalization time: a randomized clinical trial. Anesthesiology. 2014;120:365–77.

    Article  CAS  PubMed  Google Scholar 

  65. Phan TD, D’Souza B, Rattray MJ, Johnston MJ, Cowie BS. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth Intensive Care. 2014;42:752–60.

    Article  CAS  PubMed  Google Scholar 

  66. Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378:2263–74.

    Article  PubMed  Google Scholar 

  67. Grass F, Lovely JK, Crippa J, Mathis KL, Hübner M, Larson DW. Early acute kidney injury within an established enhanced recovery pathway: uncommon and transitory. World J Surg. 2019;43:1207–15.

    Article  PubMed  Google Scholar 

  68. Barber SM, Liebelt BD, Baskin DS. Incidence, etiology and outcomes of hyponatremia after transsphenoidal surgery: experience with 344 consecutive patients at a single tertiary center. J Clin Med. 2014;3:1199–219.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nicholson GT, Clabby ML, Mahle WT. Is there a benefit to postoperative fluid restriction following infant surgery. Congenit Heart Dis. 2014;9:529–35.

    Article  PubMed  Google Scholar 

  70. Lee SY, Kang SB, Kim DW, Oh HK, Ihn MH. Risk factors and preventive measures for acute urinary retention after rectal cancer surgery. World J Surg. 2015;39:275–82.

    Article  PubMed  Google Scholar 

  71. Assaad S, Kyriakides T, Tellides G, Kim AW, Perkal M, Perrino A. Extravascular lung water and tissue perfusion biomarkers after lung resection surgery under a normovolemic fluid protocol. J Cardiothorac Vasc Anesth. 2015;29:977–83.

    Article  PubMed  Google Scholar 

  72. Ahn HJ, Kim JA, Lee AR, Yang M, Jung HJ, Heo B. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery. Anesth Analg. 2016;122:186–93.

    Article  CAS  PubMed  Google Scholar 

  73. van Samkar G, Eshuis WJ, Bennink RJ, et al. Intraoperative fluid restriction in pancreatic surgery: a double blinded randomised controlled trial. PLoS One. 2015;10:e0140294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chen BP, Chen M, Bennett S, et al. Systematic review and meta-analysis of restrictive perioperative fluid management in pancreaticoduodenectomy. World J Surg. 2018;42:2938–50.

    Article  PubMed  Google Scholar 

  75. Rege A, Leraas H, Vikraman D, et al. Could the use of an enhanced recovery protocol in laparoscopic donor nephrectomy be an incentive for live kidney donation. Cureus. 2016;8:e889.

    PubMed  PubMed Central  Google Scholar 

  76. Wang CH, Cheng KW, Chen CL, et al. Effect and outcome of intraoperative fluid restriction in living liver donor hepatectomy. Ann Transplant. 2017;22:664–9.

    Article  PubMed  Google Scholar 

  77. Skytte Larsson J, Bragadottir G, Redfors B, Ricksten SE. Renal function and oxygenation are impaired early after liver transplantation despite hyperdynamic systemic circulation. Crit Care. 2017;21:87.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Luo J, Xue J, Liu J, Liu B, Liu L, Chen G. Goal-directed fluid restriction during brain surgery: a prospective randomized controlled trial. Ann Intensive Care. 2017;7:16.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hendrix RJ, Damle A, Williams C, et al. Restrictive intraoperative fluid therapy is associated with decreased morbidity and length of stay following hyperthermic intraperitoneal chemoperfusion. Ann Surg Oncol. 2019;26:490–6.

    Article  PubMed  Google Scholar 

  80. Vincent M, Mahendiran T. Improvement of fluid balance monitoring through education and rationalisation. BMJ Qual Improv Rep. 2015;4:w4102.

    Article  Google Scholar 

  81. Jeyapala S, Gerth A, Patel A, Syed N. Improving fluid balance monitoring on the wards. BMJ Qual Improv Rep. 2015;4:w4102.

    Article  Google Scholar 

  82. Davies A, Srivastava S, Seligman W, et al. Prevention of acute kidney injury through accurate fluid balance monitoring. BMJ Open Qual. 2017;6:e000006.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Baird DP, Rae F, Beecroft C, et al. Introducing an AKI predictive tool for patients undergoing orthopaedic surgery. BMJ Open Qual. 2019;8:e000306.

    Article  PubMed  PubMed Central  Google Scholar 

  84. van der Heijden M, Verheij J, van Nieuw Amerongen GP, Groeneveld AB. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med. 2009;37:1275–81.

    Article  PubMed  Google Scholar 

  85. Yates DR, Davies SJ, Milner HE, Wilson RJ. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014;112:281–9.

    Article  CAS  PubMed  Google Scholar 

  86. Qureshi SH, Rizvi SI, Patel NN, Murphy GJ. Meta-analysis of colloids versus crystalloids in critically ill, trauma and surgical patients. Br J Surg. 2016;103:14–26.

    Article  CAS  PubMed  Google Scholar 

  87. Lewis SR, Pritchard MW, Evans DJ, et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018;8:CD000567.

    PubMed  Google Scholar 

  88. Li Y, Yi S, Zhu Y, Hahn RG. Volume kinetics of Ringer’s lactate solution in acute inflammatory disease. Br J Anaesth. 2018;121:574–80.

    Article  CAS  PubMed  Google Scholar 

  89. Egal M, de Geus HR, van Bommel J, Groeneveld AB. Targeting oliguria reversal in perioperative restrictive fluid management does not influence the occurrence of renal dysfunction: A systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33:425–35.

    Article  PubMed  Google Scholar 

  90. Wen Wu FM, Burkhard F, Turri F, et al. Renal outcome after radical cystectomy and urinary diversion performed with restrictive hydration and vasopressor administration in the frame of an enhanced recovery program: A follow-up study of a randomized clinical trial. Urol Oncol. 2017;35:602.e11–7.

    Article  Google Scholar 

  91. Hughes F, Ng SC, Mythen M, Montgomery H. Could patient-controlled thirst-driven fluid administration lead to more rapid rehydration than clinician-directed fluid management? An early feasibility study. Br J Anaesth. 2018;120:284–90.

    Article  CAS  PubMed  Google Scholar 

  92. Li YH, Zhu HB, Zheng X, Chen HJ, Shao L, Hahn RG. Low doses of esmolol and phenylephrine act as diuretics during intravenous anesthesia. Crit Care. 2012;16:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Moritz ML, Ayus JC. Water water everywhere: standardizing postoperative fluid therapy with 0.9% normal saline. Anesth Analg. 2010;110:293–5.

    Article  PubMed  Google Scholar 

  94. Thongrong C, Kong N, Govindarajan B, Allen D, Mendel E, Bergese SD. Current purpose and practice of hypertonic saline in neurosurgery: a review of the literature. World Neurosurg. 2014;82:1307–18.

    Article  PubMed  Google Scholar 

  95. Lavu H, Sell NM, Carter TI, Winter JM, Maguire DP, Gratch DM, et al. The HYSLAR Trial: a prospective randomized controlled trial of the use of a restrictive fluid regimen with 3% hypertonic saline versus lactated ringers in patients undergoing pancreaticoduodenectomy. Ann Surg. 2014;260:445–55.

    Article  PubMed  Google Scholar 

  96. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely ill patients. N Engl J Med. 2015;373:1350–60.

    Article  PubMed  Google Scholar 

  97. Woodcock T. GIFTAHo; an improvement on GIFTASuP? New NICE guidelines on intravenous fluids. Anaesthesia. 2014;69:410–5.

    Article  CAS  PubMed  Google Scholar 

  98. Burdett E, Dushianthan A, Bennett-Guerrero E, Cro S, Gan TJ, Grocott MP, et al. Perioperative buffered versus non-buffered fluid administration for surgery in adults. Cochrane Database Syst Rev. 2012;12:CD004089.

    PubMed  Google Scholar 

  99. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sprint Working Party, Woodcock TE, Cook TM, Gupta KJ, Hartle A. Arterial line blood sampling: preventing hypoglycaemic brain injury 2014: the Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2014;69:380–5.

    Article  Google Scholar 

  101. Stone AB, Grant MC, Pio Roda C, Hobson D, Pawlik T, Wu CL, et al. Implementation costs of an enhanced recovery after surgery program in the United States: a financial model and sensitivity analysis based on experiences at a quaternary academic medical center. J Am Coll Surg. 2016;222(3):219–25.

    Article  PubMed  Google Scholar 

  102. Membership of the Working Party, Barker P, Creasey PE, Dhatariya K, Levy N, Lipp A, Nathanson MH, et al. Peri-operative management of the surgical patient with diabetes 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2015;70(12):1427–40.

    Article  PubMed Central  Google Scholar 

  103. MacDonald N, Ahmad T, Mohr O, Kirk-Bayley J, Moppett I, Hinds CJ, et al. Dynamic preload markers to predict fluid responsiveness during and after major gastrointestinal surgery: an observational substudy of the OPTIMISE trial. Br J Anaesth. 2015;114:598–604.

    Article  CAS  PubMed  Google Scholar 

  104. Brandstrup B, Svendsen PE, Rasmussen M, Belhage B, Rodt SÅ, Hansen B, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance. Br J Anaesth. 2012;109:191–9.

    Article  CAS  PubMed  Google Scholar 

  105. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Optimisation Systematic Review Steering Group Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013;111:535–48.

    Article  CAS  PubMed  Google Scholar 

  106. Moppett IK, Rowlands M, Mannings A, Moran CG, Wiles MD, NOTTS Investigators. LiDCO-based fluid management in patients undergoing hip fracture surgery under spinal anaesthesia: a randomized trial and systematic review. Br J Anaesth. 2015;114:444–59.

    Article  CAS  PubMed  Google Scholar 

  107. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, OPTIMISE Study Group, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.

    Article  CAS  PubMed  Google Scholar 

  108. Lazrove S, Waxman K, Shippy C, Shoemaker WC. Hemodynamic, blood volume, and oxygen transport responses to albumin and hydroxyethyl starch infusions in critically ill postoperative patients. Crit Care Med. 1980;8:302–6.

    Article  CAS  PubMed  Google Scholar 

  109. Waxman K, Lazrove S, Shoemaker WC. Physiologic responses to operation in high risk surgical patients. Surg Gynecol Obstet. 1981;152:633–8.

    CAS  PubMed  Google Scholar 

  110. ARISE Investigators, ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    Article  CAS  Google Scholar 

  111. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Article  CAS  Google Scholar 

  112. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, ProMISe Trial Investigators, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.

    Article  CAS  PubMed  Google Scholar 

  113. Ackland GL, Iqbal S, Paredes LG, et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. Lancet Respir Med. 2015;3:33–41.

    Article  CAS  PubMed  Google Scholar 

  114. Skytte Larsson J, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten SE. Effects of acute plasma volume expansion on renal perfusion, filtration, and oxygenation after cardiac surgery: a randomized study on crystalloid vs colloid. Br J Anaesth. 2015;115:736–42.

    Article  CAS  PubMed  Google Scholar 

  115. Ståhle L, Nilsson A, Hahn RG. Modelling the volume of expandable body fluid spaces during i.v. fluid therapy. Br J Anaesth. 1997;78:138–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woodcock, T.E. (2020). Restricted or Liberal Fluid Therapy. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics