Skip to main content

Dynamic Arterial Elastance: Physiology, Data and Implementation

  • Chapter
  • First Online:
Perioperative Fluid Management
  • 983 Accesses

Abstract

Dynamic arterial elastance (Eadyn) is the reapplication of effective arterial elastance into a practical bedside derivative useful for assessing blood pressure response to various interventions. Typically, the complex interaction of ventricular and arterial systems requires the use of invasive and technically difficult monitors. Now, with the advent of Eadyn the dynamics of arterial load become available with minimally invasive monitors. Furthermore, the introduction of Eadyn into current algorithms for perioperative and critical care fluid management has been shown valid and impactful on clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth [Internet]. 2002 Oct 1 [cited 2019 Mar 9];89(4):622–32. Available from http://linkinghub.elsevier.com/retrieve/pii/S0007091217370666.

  2. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature*. Crit Care Med [Internet]. 2009 Sep [cited 2019 Mar 9];37(9):2642–7. Available from http://www.ncbi.nlm.nih.gov/pubmed/19602972.

  3. Zhang Z, Lu B, Sheng X, Jin N. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J Anesth [Internet]. 2011 Dec 4 [cited 2019 Mar 9];25(6):904–16. https://doi.org/10.1007/s00540-011-1217-1

  4. Bar S, Leviel F, Abou Arab O, Badoux L, Mahjoub Y, Dupont H, et al. Dynamic arterial elastance measured by uncalibrated pulse contour analysis predicts arterial-pressure response to a decrease in norepinephrine. Br J Anaesth [Internet]. 2018 Sep [cited 2019 Apr 20];121(3):534–40. Available from https://linkinghub.elsevier.com/retrieve/pii/S0007091218300941.

  5. García MIM, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care [Internet]. 2014 Dec 19 [cited 2019 Mar 9];18(6):626. Available from http://www.ncbi.nlm.nih.gov/pubmed/25407570.

  6. Monge García MI, Guijo González P, Gracia Romero M, Gil Cano A, Rhodes A, Grounds RM, et al. Effects of arterial load variations on dynamic arterial elastance: An experimental study. Br J Anaesth [Internet]. 2017 Jun 1 [cited 2019 Feb 1];118(6):938–46. Available from https://linkinghub.elsevier.com/retrieve/pii/S0007091217300600.

  7. Guinot P-G, Abou-Arab O, Guilbart M, Bar S, Zogheib E, Daher M, et al. Monitoring dynamic arterial elastance as a means of decreasing the duration of norepinephrine treatment in vasoplegic syndrome following cardiac surgery: a prospective, randomized trial. Intensive Care Med [Internet]. 2017 May 24 [cited 2019 Apr 26];43(5):643–51. Available from http://www.ncbi.nlm.nih.gov/pubmed/28120005.

  8. Guinot P-G, Bernard E, Levrard M, Dupont H, Lorne E. Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock. Crit Care [Internet]. 2015 Jan 19 [cited 2019 Apr 27];19(1):14. Available from http://www.ncbi.nlm.nih.gov/pubmed/25598221.

  9. Seo H, Kong Y-G, Jin S-J, Chin J-H, Kim H-Y, Lee Y-K, et al. Dynamic arterial elastance in predicting arterial pressure increase after fluid challenge during robot-assisted laparoscopic prostatectomy. Medicine (Baltimore) [Internet]. 2015 Oct [cited 2019 Mar 9];94(41):e1794. Available from http://www.ncbi.nlm.nih.gov/pubmed/26469925.

  10. Westerhof N, Lankhaar J-W, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput [Internet]. 2009 Feb 10 [cited 2019 May 30];47(2):131–41. Available from https://doi.org/10.1007/s11517-008-0359-2

  11. Stergiopulos N, Meister JJ, Westerhof N. Determinants of stroke volume and systolic and diastolic aortic pressure. Am J Physiol [Internet]. 1996;270(6 Pt 2):H2050-9. Available from http://www.ncbi.nlm.nih.gov/pubmed/8764256.

  12. Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol Circ Physiol. 2017;276(1):H81–8.

    Article  Google Scholar 

  13. Wang J-J, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Circ Physiol [Internet]. 2003 Apr [cited 2019 Mar 17];284(4):H1358–68. Available from http://www.physiology.org/doi/10.1152/ajpheart.00175.2002.

  14. Gaddum N, Alastruey J, Chowienczyk P, Rutten MCM, Segers P, Schaeffter T. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study. Am J Physiol Heart Circ Physiol [Internet]. 2017 Sep 1 [cited 2019 May 30];313(3):H558–67. Available from http://www.ncbi.nlm.nih.gov/pubmed/28576835.

  15. Narayan O, Parker KH, Davies JE, Hughes AD, Meredith IT, Cameron JD. Reservoir pressure analysis of aortic blood pressure: an in-vivo study at five locations in humans. J Hypertens [Internet]. 2017 [cited 2019 May 1];35(10):2025–33. Available from http://www.ncbi.nlm.nih.gov/pubmed/28582283.

  16. Tijsseling AS, Anderson A. The Joukowsky equation for fluids and solids [Internet]. 2006 [cited 2019 May 1]. Available from http://www.win.tue.nl/analysis/reports/rana06-08.pdf

  17. Nourbakhsh SA, Jaumotte BA, Hirsch C, Parizi HB. Water Hammer. In: Turbopumps and pumping systems. Heidelberg: Springer; 2007. p. 122–42. https://doi.org/10.1007/978-3-540-68214-1_9.

    Chapter  Google Scholar 

  18. Jozwiak M, Monnet X, Teboul J-L, Monge García MI, Pinsky MR, Cecconi M. The dynamic arterial elastance: a call for a cautious interpretation. Intensive Care Med [Internet]. 2017 Sep 11 [cited 2019 Apr 26];43(9):1438–9. Available from http://link.springer.com/10.1007/s00134-017-4836-7.

  19. Borlaug BA, Lam CSP, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease. J Am Coll Cardiol [Internet]. 2009 Jul 28 [cited 2019 May 31];54(5):410–8. Available from http://www.ncbi.nlm.nih.gov/pubmed/19628115.

  20. Wu C-Y, Cheng Y-J, Liu Y-J, Wu T-T, Chien C-T, Chan K-C, et al. Predicting stroke volume and arterial pressure fluid responsiveness in liver cirrhosis patients using dynamic preload variables. Eur J Anaesthesiol [Internet]. 2016 Sep [cited 2019 May 6];33(9):645–52. Available from http://www.ncbi.nlm.nih.gov/pubmed/27167058.

  21. Lanchon R, Nouette-Gaulain K, Stecken L, Sesay M, Lefrant JY, Biais M. Dynamic arterial elastance obtained using arterial signal does not predict an increase in arterial pressure after a volume expansion in the operating room. Anaesth Crit Care Pain Med [Internet]. 2017 Dec 1 [cited 2019 Mar 20];36(6):377–82. Available from https://www.sciencedirect.com/science/article/abs/pii/S2352556816301370?via%3Dihub.

  22. Chirinos JA. Ventricular-arterial coupling: Invasive and non-invasive assessment. Artery Res [Internet]. 2013 Mar [cited 2019 May 6];7(1). Available from http://www.ncbi.nlm.nih.gov/pubmed/24179554.

  23. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol [Internet]. 1998 Nov [cited 2019 May 31];32(5):1221–7. Available from http://www.ncbi.nlm.nih.gov/pubmed/9809929.

  24. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Cardiol Clin. 2011;29:447–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramirez, P., Troianos, C., Farag, E., Tovar-Camargo, O. (2020). Dynamic Arterial Elastance: Physiology, Data and Implementation. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics