Skip to main content

Perioperative Fluid Management in Pediatric Patients

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Intravenous fluid administration is an integral part of perioperative care for children undergoing surgery. The ultimate goal of intravenous fluid therapy is to maintain cardiovascular stability, euvolemia, normal electrolyte and acid base status. The volume and composition of the replacement fluids should be based on the preoperative patient condition, type of procedure and anticipated perioperative course. Neonates and infants poorly tolerate errors in fluid and electrolyte management. The chapter will mainly focus on distinctly different pediatric physiology, advantages of optimized perioperative fasting duration and assessment of volume status in neonates and children. In this chapter, we will review the various types of fluids, newer recommendations for perioperative fluid management in children to maintain normal physiology and to improve safety and efficacy. In addition, clinical situations requiring special consideration will be narrated briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhananker SM, Ramamoorthy C, et al. Anesthesia-related cardiac arrest in children: update from the pediatric cardiac arrest registry. Anesth Analg. 2007;105(2):344–50.

    PubMed  Google Scholar 

  2. Feldschuh J, Enson Y. Prediction of the normal blood volume: relation of blood volume to body habitus. Circulation. 1977;56:605–12.

    CAS  PubMed  Google Scholar 

  3. Coté CJ. NPO after midnight for children - a reappraisal. Anesthesiology. 1990;72:589–92.

    PubMed  Google Scholar 

  4. Brady M, Kinn S, Ness V, et al. Preoperative fasting for preventing perioperative complications in children. Cochrane Database Syst Rev. 2009;4:CD005285. https://doi.org/10.1002/14651858.

    Article  CAS  Google Scholar 

  5. Dennhardt N, Beck C, Huber D, Nickel K, Sander B, Witt LH, Boethig D, Sümpelmann R. Impact of preoperative fasting times on blood glucose concentration, ketone bodies and acid-base balance in children younger than 36 months: a prospective observational study. Eur J Anaesthesiol. 2015;32(12):857–61.

    CAS  PubMed  Google Scholar 

  6. Thomas M, Morrison C, Newton R, Schindler E. Consensus statement on clear fluids fasting for elective pediatric general anesthesia. Paediatr Anaesth. 2018;28:411–4.

    PubMed  Google Scholar 

  7. Smith I, Kranke P, Murat I, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2011;28:556.

    PubMed  Google Scholar 

  8. Linscott D. SPANZA endorses 1-hour clear fluid fasting consensus statement. Paediatr Anaesth. 2019;29(3):292.

    PubMed  Google Scholar 

  9. Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures. An updated report by the American Society of Anesthesiologists Task Force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration. Anesthesiology. 2017;126(3):376–93.

    Google Scholar 

  10. Falszewska A, et al. Diagnostic accuracy of three clinical dehydration scales: a systematic review. Arch Dis Child. 2018;103(4):383–8.

    PubMed  Google Scholar 

  11. Steiner MJ, et al. Is this child dehydrated? JAMA. 2004;291(22):2746–54.

    CAS  PubMed  Google Scholar 

  12. Freedman SB, Vandermeer B, Milne A, Hartling L, Pediatric Emergency Research Canada Gastroenteritis Study Group. Diagnosing clinically significant dehydration in children with acute gastroenteritis using noninvasive methods: a meta-analysis. J Pediatr. 2015;166(4):908–16.

    PubMed  Google Scholar 

  13. Vega RM, Avner JR. A prospective study of the usefulness of clinical and laboratory parameters for predicting percentage of dehydration in children. Pediatr Emerg Care. 1997;13(3):179–82.

    CAS  PubMed  Google Scholar 

  14. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823–32.

    CAS  PubMed  Google Scholar 

  15. Abdessalam S. Hypotonic versus isotonic maintenance fluid administration in the pediatric surgical patient. Semin Pediatr Surg. 2019;28(1):43–6.

    PubMed  Google Scholar 

  16. McNab S, Ware R, Neville K, Choong K, Coulthard M, Duke T, et al. Isotonic versus hypotonic solutions for maintenance intravenous fluid administration in children (review). Cochrane Database Syst Review. 2014;1(60):CD009457.

    Google Scholar 

  17. Wang J, Xu E, Xiao Y. Isotonic versus hypotonic maintenance IV fluids in hospitalized children: a meta-analysis. Pediatrics. 2014;133:105–13.

    PubMed  Google Scholar 

  18. Yang G, Jiang W, Wang X, Liu W. The efficacy of isotonic and hypotonic intravenous maintenance fluid for pediatric patients: a meta-analysis of randomized controlled trials. Pediatr Emer Care. 2015;31:122–6.

    Google Scholar 

  19. Zhou F, Peng ZY, Bishop JV, Cove ME, Singbartl K, Kellum JA. Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis. Crit Care Med. 2014;42(4):e270–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw A, Bagshaw S, Goldstein S, Scherer L, Duan M, Schermer C, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-lyte. Ann Surg. 2012;255:821–9.

    PubMed  Google Scholar 

  22. Sümpelmann R, Becke K, Brenner S, Breschan C, Eich C, Höhne C, et al. Perioperative intravenous fluid therapy in children: guidelines from the Association of the Scientific Medical Societies in Germany. Paediatr Anaesth. 2017;27(1):10–8.

    PubMed  Google Scholar 

  23. Baily AG, McNaull PP, Jooste E, Tuchman JB. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Pediatric Anesthesiol. 2010;110(2):375–90.

    Google Scholar 

  24. Mitra S, Khandelwal P. Are all colloids the same? How to select the right colloid? Indian J Anesth. 2009;53(5):592–607.

    Google Scholar 

  25. Inder T. How low can I go? The impact of hypoglycemia on the immature brain. Pediatrics. 2008;122(2):440–1.

    PubMed  Google Scholar 

  26. Burns CM, Rutherford MA, Boardman JP, Cowan FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics. 2008;122(1):65–74.

    PubMed  Google Scholar 

  27. Leelanukrom R, Cunliffe M. Intraoperative fluid and glucose management in children. Paediatr Anaesth. 2000;10(4):353–9.

    CAS  PubMed  Google Scholar 

  28. Paut O, Lacroix F. Recent developments in the perioperative fluid management for the paediatric patient. Curr Opin Anaesthesiol. 2006;19(3):268–77.

    PubMed  Google Scholar 

  29. Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9.

    PubMed  Google Scholar 

  30. Hirshberg E, Larsen G, Van Duker H. Alterations in glucose homeostasis in the pediatric intensive care unit: hyperglycemia and glucose variability are associated with increased mortality and morbidity. Pediatr Crit Care Med. 2008;9(4):361–6.

    PubMed  Google Scholar 

  31. Mikawa K, Maekawa N, Goto R, Tanaka O, Yaku H, Obara H. Effects of exogenous intravenous glucose on plasma glucose and lipid homeostasis in anesthetized children. Anesthesiology. 1991;74(6):1017–22.

    CAS  PubMed  Google Scholar 

  32. Nishina K, Mikawa K, Maekawa N, Asano M, Obara H. Effects of exogenous intravenous glucose on plasma glucose and lipid homeostasis in anesthetized infants. Anesthesiology. 1995;83(2):258–63.

    CAS  PubMed  Google Scholar 

  33. Disma N, Mameli L, Pistorio A, Davidson A, Barabino P, Locatelli BG, et al. A novel balanced isotonic sodium solution vs normal saline during major surgery in children up to 36 months: a multicenter RCT. Paediatr Anaesth. 2014;24(9):980–6.

    PubMed  Google Scholar 

  34. McNab S, Duke T, South M, Babl FE, Lee KJ, Arnup SJ, et al. 140 mmol/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. Lancet. 2015;385:1190–7.

    CAS  PubMed  Google Scholar 

  35. Berry F. Practical aspects of fluid and electrolyte therapy. In: Berry F, editor. Anesthetic Management of Difficult and Routine Pediatric Patients. New York: Churchill Livingstone; 1986. p. 107–35.

    Google Scholar 

  36. Management of shock. In: Pediatric advanced life support provider manual, Chameides L, Samson RA, Schexnayder SM, Hazinski MF (Eds), American Heart Association, Subcommittee on Pediatric Resuscitation, Dallas 2011. P. 85.

    Google Scholar 

  37. Becke K, Eich C, Höhne C, Jöhr M, Machotta A, Schreiber M, et al. Choosing wisely in pediatric anesthesia: an interpretation from the German scientific working Group of Paediatric Anaesthesia (WAKKA). Paediatr Anaesth. 2018;28(7):588–96.

    PubMed  Google Scholar 

  38. Sümpelmann R, Becke K, Zander R, Witt L. Perioperative fluid management in children: can we sum it all up now? Curr Opin Anaesthesiol. 2019;32(3):384–91.

    PubMed  Google Scholar 

  39. Rackow EC, Falk JL, Fein IA, et al. Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med. 1983;11:839.

    CAS  PubMed  Google Scholar 

  40. Murat I, Dubois MC. Perioperative fluid therapy in pediatrics. Paediatr Anaesth. 2008;18(5):363–70.

    PubMed  Google Scholar 

  41. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.

    PubMed  Google Scholar 

  42. Sanford EL, Zurakowski D, Litvinova A, Zalieckas JM, Cravero JP. The association between high-volume intraoperative fluid administration and outcomes among pediatric patients undergoing large bowel resection. Paediatr Anaesth. 2019;29(4):315–21.

    PubMed  Google Scholar 

  43. Parker RI. Transfusion in critically ill children: indication, risks and challenges. Crit Care Med. 2014;42:675–90.

    PubMed  Google Scholar 

  44. Crowley M, Kirpalani H. A rational approach to red cell transfusion in the neonatal ICU. Curr Opin Pediatr. 2010;22:151–7.

    PubMed  Google Scholar 

  45. Reeve K, Jones H, Hartrey R. Transfusion guidelines in children: I. Anaesthesia & Intensive Care Medicine. 2014;15(12):558–62.

    Google Scholar 

  46. M ZG. Management of Perioperative Bleeding in Children. Step by step review. Colombian J Anaesthesiol. 2013;41:50–6.

    Google Scholar 

  47. Gan TJ, Soppitt A, Maroof M. el-Moalem H, Robertson KM, Moretti E, Dwane P. goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6.

    PubMed  Google Scholar 

  48. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, Fleming SC. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95(5):634–42.

    CAS  PubMed  Google Scholar 

  49. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93(9):1069–76.

    CAS  PubMed  Google Scholar 

  50. Kehlet H, Bundgaard-Nielsen M. Goal-directed perioperative fluid management: why, when, and how? Anesthesiology. 2009;110(3):453–5.

    PubMed  Google Scholar 

  51. Herrin J. Fluid and electrolytes. In: Graef JW, editor. Manual of pediatric therapeutics. 6th ed. Philadelphia: Lippincott-Raven; 1997. p. 63–75.

    Google Scholar 

  52. Takahashi N, Hoshi J, Nishida H. Water balance, electrolytes and acid-base balance in extremely premature infants. Acta Paediatr Jpn. 1994;36(3):250–5.

    CAS  PubMed  Google Scholar 

  53. Edjo Nkilly G, Michelet D, Hilly J, Diallo T, Greff B, Mangalsuren N. Postoperative decrease in plasma sodium concentration after infusion of hypotonic intravenous solutions in neonatal surgery. Br J Anaesth. 2014;112(3):540–5.

    CAS  PubMed  Google Scholar 

  54. Datta PK, Pawar DK, Baidya DK, Maitra S, Aravindan A, Srinivas M. Dextrose-containing intraoperative fluid in neonates: a randomized controlled trial. Paediatr Anaesth. 2016;26(6):599–607.

    PubMed  Google Scholar 

  55. McNab S, Duke T, South M, et al. 140mmol/L of sodium versus 77mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. Lancet. 2015;385:1190–7.

    CAS  PubMed  Google Scholar 

  56. Feld LG, Neuspiel DR, Foster BA, Leu MG, Garber MD, Austin K, et al. Clinical practice guideline: maintenance intravenous fluids in children. Pediatrics. 2018;142(6):e20183083.

    PubMed  Google Scholar 

  57. Davis PJ, Cladis F. Smith’s anesthesia for infants and children. 9th ed. St. Louis, MO: Elsevier; 2017.

    Google Scholar 

  58. Firth PG, Head CA. Sickle cell disease and anesthesia. Anaesthesiology. 2004;101:766–85.

    Google Scholar 

  59. Vichinsky EP, Haberkern CM, Neumayr L, Earles AN, Black D, Koshy M, et al. A comparison of conservative and aggressive transfusion regimens in the perioperative management of sickle cell disease. The preoperative transfusion in sickle cell disease study group. N Engl J Med. 1995;333(4):206–13.

    CAS  PubMed  Google Scholar 

  60. Kamata M, Cartabuke RS, Tobias JD. Perioperative care of infants with pyloric stenosis. Pediatr Anesth. 2015;25:1193–206.

    Google Scholar 

  61. Yao F-SF. Yao & Artusio’s anesthesiology: problem-oriented patient management. Philadelphia: Lippincott Williams & Wilkins; 2016.

    Google Scholar 

  62. Niezgoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. Paediatric Anesth. 2013;23(9):785–93.

    Google Scholar 

  63. Pollac LC, Barron ME, Maron BJ. Hypertrophic cardiomyopathy. Anesthesiology. 2006;104:183–92.

    Google Scholar 

  64. Andropoulos DB, et al. Anesthesia for congenital heart disease. 3rd ed. Hoboken, New Jersey: Wiley; 2015.

    Google Scholar 

  65. Gurrieri C, Sprung J, Weingarten TN, Warner ME. Patients with glycogen storage diseases undergoing anesthesia: a case series. BMC Anesthesiol. 2017;17(1):134.

    PubMed  PubMed Central  Google Scholar 

  66. Dawidson I, Berglin E, Brynger H. Reisch. Intravascular volumes and colloid dynamics in relation to fluid management in living related kidney donors and recipients. Crit Care Med. 1987;15(7):631–6.

    CAS  PubMed  Google Scholar 

  67. O’Malley CM, Frumento RJ, Hardy MA, Benvenisty AI, Brentjens TE, Mercer JS, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100(5):1518–24.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendrasingh Chhabada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chhabada, S., Licina, L., Gupta, N. (2020). Perioperative Fluid Management in Pediatric Patients. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics