Skip to main content

An Inequality for Hölder Continuous Functions Generalizing a Result of Carlo Miranda

  • Chapter
  • First Online:
Computational and Analytic Methods in Science and Engineering

Abstract

We prove an inequality for the Hölder continuity of a continuously differentiable function in a bounded open Lipschitz set, which generalizes an inequality of Carlo Miranda in a bounded open strict hypograph of a function of class C 1, α for some α ∈ ]0, 1] and which enables to simplify a proof of a result of Carlo Miranda for layer potentials with moment in a Schauder space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 16 September 2020

    Unfortunately the family name of the author was incorrect in the online version and it has been corrected now so that the full name appears as follows in Springer web sites.

Notes

  1. 1.

    Professor at the University of Padova, Italy.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  Google Scholar 

  2. Aikawa, H.: Personal communication (2019)

    Google Scholar 

  3. Burenkov, V.I.: Sobolev spaces on domains. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 137. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart (1998)

    Google Scholar 

  4. Dalla Riva, M., Lanza de Cristoforis, M., Musolino, P.: A Functional Analytic Approach to singularly perturbed boundary value problems. Book draft (2019)

    Google Scholar 

  5. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  Google Scholar 

  6. Fichera, G.: Alcuni recenti sviluppi della teoria dei problemi al contorno per le equazioni alle derivate parziali lineari (Italian). In: Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, pp. 174–227. Edizioni Cremonese, Roma (1955)

    Google Scholar 

  7. Fichera, G.: Boundary value problems of elasticity with unilateral constraints. In: Mechanics of Solids. Encyclopedia of Physics, vol. II, pp. 391–424. Springer, Berlin (1984)

    Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  9. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  10. Lanza de Cristoforis, M.: Properties and pathologies of the composition and inversion operators in Schauder spaces. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 15, 93–109 (1991)

    Google Scholar 

  11. Lanza de Cristoforis, M.: Lipschitz sets and outer nontangential vector fields. Typewritten manuscript (2020)

    Google Scholar 

  12. Lanza de Cristoforis, M., Rossi, L.: Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density. In: Kilbas, A.A., Rogosin, S.V. (eds.) Analytic Methods of Analysis and Differential Equations, AMADE 2006, pp. 193–220. Cambridge Scientific Publishers, Cambridge (2008)

    Google Scholar 

  13. Miranda, C.: Sulle proprietà di regolarità di certe trasformazioni integrali. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez I 7, 303–336 (1965)

    MATH  Google Scholar 

  14. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987)

    Book  Google Scholar 

  15. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to Prof H. Aikawa for pointing out the validity of inequality (10.2) in uniform domains (see [Ai19]), to Prof. A. Cialdea for pointing out the references [Fi55], [Fi84], and to Prof. M. Dalla Riva and to Dr. P. Musolino for a number of suggestions on the manuscript.

The author acknowledges the support of “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni,” of “INdAM” and of the project “Singular perturbation problems for the heat equation in a perforated domain:BIRD168373/16” of the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lanza de Cristoforis .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Lemma 10.1

If x ∈ ∂Ω, then there exists a coordinate cylinder C(x, R x, r x, δ x) around x and a corresponding function \(\tilde {\gamma }_x\) which represents ∂Ω in C(x, R x, r x, δ x). Now let

$$\displaystyle \begin{aligned} \delta_x^{\prime}\in]0,\min\{\delta_x,\delta_\ast\}[\,. \end{aligned}$$

Since \(\tilde {\gamma }_x\) is continuous, there exists \(r_{x}^{\prime }\in ]0,+\infty [\) such that

$$\displaystyle \begin{aligned} r_{x}^{\prime}<\min\{ r_x,r_\ast\}\,, \qquad |\tilde{\gamma}_x(\eta)|<\frac{1}{2}\delta_x^{\prime} \qquad \forall \eta\in {\mathbb{B}}_{n-1}(0,r_{x}^{\prime})\,. \end{aligned}$$

Then \(C(x,R_x,r_x^{\prime },\delta _x^{\prime })\) is a coordinate cylinder for Ω around x and the restriction \(\tilde {\gamma }_{x|{\mathbb {B}}_{n-1}(0,r_{x}^{\prime })}\) represents ∂Ω in \(C(x,R_x,r_x^{\prime },\delta _x^{\prime })\). By definition of C 0, α-norm, we have

$$\displaystyle \begin{aligned} \| \tilde{\gamma}_{x|{\mathbb{B}}_{n-1}(0,r_{x}^{\prime})} \|{}_{C^{0,\alpha}(\overline{{\mathbb{B}}_{n-1}(0,r_{x}^{\prime})})} \leq \| \tilde{\gamma}_{x|{\mathbb{B}}_{n-1}(0,r_{x})} \|{}_{C^{0,\alpha}(\overline{{\mathbb{B}}_{n-1}(0,r_{x})})}\,. \end{aligned}$$

Since

$$\displaystyle \begin{aligned} \left\{x+R_x^t\left( {\mathbb{B}}_{n-1}(0,r_{x}^{\prime}/4) \times]-\delta_x^{\prime},\delta_x^{\prime}[ \right) \right\}_{x\in\partial\varOmega} \end{aligned}$$

is an open cover of ∂Ω and ∂Ω is compact there exists a finite family \(\{x^{(j)}\}_{j=1}^k\) of points of ∂Ω such that

$$\displaystyle \begin{aligned} \partial\varOmega\subseteq \bigcup_{j=1}^k \left[x^{(j)}+R_{x^{(j)}}^t\left( {\mathbb{B}}_{n-1}(0,r_{x^{(j)}}^{\prime}/4) \times] -\delta_{x^{(j)}} ^{\prime},\delta_{x^{(j)}}^{\prime}[ \right)\right]\,. \end{aligned}$$

To shorten our notation, we find convenient to set

$$\displaystyle \begin{aligned} R_j\equiv R_{x^{(j)}}\,,\qquad r_j^{\prime}\equiv r_{x^{(j)}}^{\prime}\,\qquad \delta_j^{\prime}\equiv\delta_{x^{(j)}}^{\prime}\,,\qquad \gamma_j\equiv \tilde{\gamma}_{ x^{(j)} |{\mathbb{B}}_{n-1}(0,r_{ x^{(j)}}^{\prime})} \end{aligned}$$

for all j ∈{1, …, k}. Next we choose

$$\displaystyle \begin{aligned} \delta\in]0,\frac{1}{4}\min_{j\in\{1,\dots,k\}}\delta_j^{\prime}[\,. \end{aligned}$$

By the uniform continuity of the functions γ j, there exists

$$\displaystyle \begin{aligned} r\in ]0,\frac{1}{4}\min_{j\in\{1,\dots,k\}}r_j^{\prime}[ \end{aligned}$$

such that

$$\displaystyle \begin{aligned} |\gamma_j(\eta_1)-\gamma_j(\eta_2)|<\delta/2 \qquad {\text{whenever}}\ \eta_1, \eta_2\in {\mathbb{B}}_{n-1}(0,r_j)\,,\ |\eta_1-\eta_2|<r \end{aligned} $$
(10.22)

for all j ∈{1, …, k}. Next we fix an arbitrary x ∈ ∂Ω and we define a coordinate cylinder for Ω around x. Let j ∈{1, …, k} be such that

$$\displaystyle \begin{aligned} x\in x^{(j)}+R_j^t\left( {\mathbb{B}}_{n-1}(0,r_j^{\prime}/4) \times]-\delta_j^{\prime},\delta_j^{\prime}[\right) \,. \end{aligned}$$

Then there exists \(\eta _x\in {\mathbb {B}}_{n-1}(0,r_j^{\prime }/4)\) such that

$$\displaystyle \begin{aligned} x=x^{(j)}+R_j^t( \eta_x,\gamma_j(\eta_x))^t\,. \end{aligned}$$

Since \(r<r_j^{\prime }/4\), we have

$$\displaystyle \begin{aligned} {\mathbb{B}}_{n-1}(\eta_x,r)\subseteq {\mathbb{B}}_{n-1}(0,r_j^{\prime}/2)\,. \end{aligned}$$

Since \(\delta <\delta _j^{\prime }/4\), we have

$$\displaystyle \begin{aligned} ]\gamma_j(\eta_x)-\delta ,\gamma_j(\eta_x)+\delta [ \subseteq ]-(\delta_j^{\prime}/2)-\delta,(\delta_j^{\prime}/2)+\delta[ \subseteq ]-(3\delta_j^{\prime}/4),(3\delta_j^{\prime}/4)[\,. \end{aligned}$$

Next we set

$$\displaystyle \begin{aligned} \gamma_x(\eta)\equiv \gamma_j(\eta_x+\eta)-\gamma_j(\eta_x) \qquad \forall \eta\in {\mathbb{B}}_{n-1}(0,r)\,, \end{aligned}$$

and we claim that

$$\displaystyle \begin{aligned} C(x,R_j,r,\delta) \end{aligned}$$

is a coordinate cylinder for Ω around x and that γ x represents ∂Ω in C(x, R j, r, δ). To do so, we observe that

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} &\displaystyle &\displaystyle { R_j(\varOmega-x)\cap ( {\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[) } \\ &\displaystyle &\displaystyle =R_j\left( \varOmega-x^{(j)}-R_j^t(\eta_x,\gamma_j(\eta_x))^t \right)\cap ({\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[) \\ &\displaystyle &\displaystyle =\left( R_j(\varOmega-x^{(j)})-(\eta_x,\gamma_j(\eta_x))^t \right) \\ &\displaystyle &\displaystyle \qquad \qquad \cap \left( ( {\mathbb{B}}_{n-1}(\eta_x,r)\times]-\delta+\gamma_j(\eta_x),\gamma_j(\eta_x) +\delta[ )-(\eta_x,\gamma_j(\eta_x))^t \right) \\ &\displaystyle &\displaystyle =R_j(\varOmega-x^{(j)}) \cap \left( {\mathbb{B}}_{n-1}(\eta_x,r)\times]-\delta+\gamma_j(\eta_x),\gamma_j(\eta_x)+\delta[\right) -(\eta_x,\gamma_j(\eta_x))^t \\ &\displaystyle &\displaystyle =R_j(\varOmega-x^{(j)}) \cap \left( {\mathbb{B}}_{n-1}(0,r_j^{\prime})\times]-\delta_j^{\prime},\delta_j^{\prime}[ \right) \\ &\displaystyle &\displaystyle \qquad \qquad \cap \left( {\mathbb{B}}_{n-1}(\eta_x,r)\times]-\delta+\gamma_j(\eta_x),\gamma_j(\eta_x)+\delta[ \right)-(\eta_x,\gamma_j(\eta_x)) \\ &\displaystyle &\displaystyle =({\mathrm{hypograph}}_s(\gamma_j)) \\ &\displaystyle &\displaystyle \qquad \qquad \cap \left( {\mathbb{B}}_{n-1}(\eta_x,r)\times]-\delta+\gamma_j(\eta_x),\gamma_j(\eta_x)+\delta[ \right)-(\eta_x,\gamma_j(\eta_x))\,. \end{array} \end{aligned} $$
(10.23)

Next we observe that

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} &\displaystyle &\displaystyle { {\mathrm{hypograph}}_s(\gamma_x) } \\ &\displaystyle &\displaystyle =\left\{ (\eta,y)\in {\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[:\,y<\gamma_x(\eta) \right\} \\ &\displaystyle &\displaystyle =\left\{ (\eta,y)\in {\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[:\, y+\gamma_j(\eta_x)<\gamma_j(\eta_x+\eta) \right\} \\ &\displaystyle &\displaystyle =\left\{ (\eta,y)\in {\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[:\, (\eta+\eta_x,y+\gamma_j(\eta_x))\in {\mathrm{hypograph}}_s(\gamma_j) \right\} \\ &\displaystyle &\displaystyle =\left\{ (\eta,y)\in {\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[:\, (\eta,y)\in {\mathrm{hypograph}}_s(\gamma_j)-(\eta_x,\gamma_j(\eta_x)) \right\} \\ &\displaystyle &\displaystyle =\bigg\{\bigg. (\eta,y)\in \left( {\mathbb{B}}_{n-1}(\eta_x,r)\times ]-\delta+\gamma_j(\eta_x),\gamma_j(\eta_x)+\delta,[ \right)-(\eta_x,\gamma_j(\eta_x)):\, \\ &\displaystyle &\displaystyle \qquad \qquad \qquad \qquad \qquad \qquad \qquad (\eta,y)\in {\mathrm{hypograph}}_s(\gamma_j)-(\eta_x,\gamma_j(\eta_x)) \bigg.\bigg\} \\ &\displaystyle &\displaystyle =\bigg[\bigg.{\mathrm{hypograph}}_s(\gamma_j) \\ &\displaystyle &\displaystyle \qquad \qquad \qquad \cap \left( {\mathbb{B}}_{n-1}(\eta_x,r)\times ]-\delta+\gamma_j(\eta_x),\gamma_j(\eta_x)+\delta,[ \right)\bigg.\bigg]-(\eta_x,\gamma_j(\eta_x))\,. \end{array} \end{aligned} $$
(10.24)

Then by combining (10.23) and (10.24) we obtain

$$\displaystyle \begin{aligned} R_j(\varOmega-x)\cap ( {\mathbb{B}}_{n-1}(0,r)\times]-\delta,\delta[) ={\mathrm{hypograph}}_s(\gamma_x)\,. \end{aligned}$$

By the definition of γ x and by inequality (10.22), we have

$$\displaystyle \begin{aligned} \gamma_x(0)=0\,,\qquad |\gamma_x(\eta)|<\delta/2\qquad \forall \eta\in {\mathbb{B}}_{n-1}(0,r)\,. \end{aligned}$$

Moreover, γ x has the same regularity of γ j and if α > 0, we have

$$\displaystyle \begin{aligned} |\gamma_x: \overline{{\mathbb{B}}_{n-1}(0,r)} |{}_{ \alpha }\leq \|\gamma_j\|{}_{ C^{0,\alpha}(\overline{{\mathbb{B}}_{n-1}(0,r_j^{\prime})}) } \leq\sup_{l=1,\dots,k}\|\gamma_l\|{}_{ C^{0,\alpha}(\overline{{\mathbb{B}}_{n-1}(0,r_l^{\prime})}) } <+\infty\,, \end{aligned}$$

and thus the proof is complete. □

Lemma 10.5

Let Ω be an open subset of \({\mathbb {R}}^{n}\) . Let K be a compact subset of Ω. Then there exists an open bounded subset Ω 1 of Ω of class C such that

$$\displaystyle \begin{aligned} K\subseteq \varOmega_1\subseteq \overline{\varOmega_1}\subseteq \varOmega\,. \end{aligned}$$

If we further assume that K is connected, then we can take Ω 1 to be connected.

For a proof, we refer to [DaLaMu19, Ch. 2], which contains a proof due to G. De Marco.Footnote 1

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lanza de Cristoforis, M. (2020). An Inequality for Hölder Continuous Functions Generalizing a Result of Carlo Miranda. In: Constanda, C. (eds) Computational and Analytic Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-48186-5_10

Download citation

Publish with us

Policies and ethics