Skip to main content

High Performance Computing for Geospatial Applications: A Retrospective View

  • Chapter
  • First Online:
High Performance Computing for Geospatial Applications

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 23))

Abstract

Many types of geospatial analyses are computationally complex, involving, for example, solution processes that require numerous iterations or combinatorial comparisons. This complexity has motivated the application of high performance computing (HPC) to a variety of geospatial problems. In many instances, HPC assumes even greater importance because complexity interacts with rapidly growing volumes of geospatial information to further impede analysis and display. This chapter briefly reviews the underlying need for HPC in geospatial applications and describes different approaches to past implementations. Many of these applications were developed using hardware systems that had a relatively short life-span and were implemented in software that was not easily portable. More promising recent approaches have turned to the use of distributed resources that includes cyberinfrastructure as well as cloud and fog computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-Edge-Computing-Whitepaper-v6-Final.pdf.

References

  • Amdahl, G. M. (1967). Validity of the single-processor approach to achieving large-scale computing capabilities. In Proceedings of the American Federation of Information Processing Societies Conference (pp. 483–485). Reston, VA: AFIPS.

    Google Scholar 

  • Anderson, T. E., Culler, D. E., Patterson, D. A., & the NOW Team. (1995). A case for NOW (networks of workstations). IEEE Micro, 15(1), 54–64.

    Google Scholar 

  • Armstrong, M. P. (2000). Geography and computational science. Annals of the Association of American Geographers, 90(1), 146–156.

    Google Scholar 

  • Armstrong, M. P., Cowles, M., & Wang, S. (2005). Using a computational grid for geographic information analysis. The Professional Geographer, 57(3), 365–375.

    Google Scholar 

  • Armstrong, M. P., & Densham, P. J. (1992). Domain decomposition for parallel processing of spatial problems. Computers, Environment and Urban Systems, 16(6), 497–513.

    Google Scholar 

  • Armstrong, M. P., & Marciano, R. J. (1995). Massively parallel processing of spatial statistics. International Journal of Geographical Information Systems, 9(2), 169–189.

    Google Scholar 

  • Armstrong, M. P., & Marciano, R. J. (1996). Local interpolation using a distributed parallel supercomputer. International Journal of Geographical Information Systems, 10(6), 713–729.

    Google Scholar 

  • Armstrong, M. P., & Marciano, R. J. (1997). Massively parallel strategies for local spatial interpolation. Computers & Geosciences, 23(8), 859–867.

    Google Scholar 

  • Armstrong, M. P, & Marciano, R. J. (1998). A network of workstations (NOW) approach to spatial data analysis: The case of distributed parallel interpolation. In Proceedings of the Eighth International Symposium on Spatial Data Handling (pp. 287–296). Burnaby, BC: International Geographical Union.

    Google Scholar 

  • Armstrong, M. P., Pavlik, C. E., & Marciano, R. J. (1994). Parallel processing of spatial statistics. Computers & Geosciences, 20(2), 91–104.

    Google Scholar 

  • Atkins, D. E., Droegemeier, K. K., Feldman, S. I., Garcia-Molina, H., Klein, M. L., Messerschmitt, D. G., et al. (2003). Revolutionizing science and engineering through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure. http://www.nsf.gov/od/oci/reports/toc.jsp

  • August, M. C., Brost, G. M., Hsiung, C. C., & Schiffleger, A. J. (1989). Cray X-MP: The birth of a supercomputer. IEEE Computer, 22(1), 45–52.

    Google Scholar 

  • Cramer, B. E., & Armstrong, M. P. (1999). An evaluation of domain decomposition strategies for parallel spatial interpolation of surfaces. Geographical Analysis, 31(2), 148–168.

    Google Scholar 

  • Densham, P. J., & Armstrong, M. P. (1994). A heterogeneous processing approach to spatial decision support systems. In T. C. Waugh & R. G. Healey (Eds.), Advances in GIS research (Vol. 1, pp. 29–45). London: Taylor and Francis.

    Google Scholar 

  • Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE Transactions on Computers, C-21(9), 948–960. https://doi.org/10.1109/TC.1972.5009071

    Article  Google Scholar 

  • Foster, I., & Kesselman, C. (Eds.). (1999). The grid: blueprint for a new computing infrastructure. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Frank, S., Burkhardt, H., & Rothnie, J. (1993). The KSR 1: Bridging the gap between shared memory and MPPs. COMPCON Spring '93. Digest of Papers, pp. 285–294. https://doi.ieeecomputersociety.org/10.1109/CMPCON.1993.289682

  • Franklin, W. R., Narayanaswami, C., Kankanhalli, M., Sun, D., Zhou, M.-C., & Wu, P. Y. F. (1989). Uniform grids: A technique for intersection detection on serial and parallel machines. In Proceedings of the Ninth International Symposium on Computer-Assisted Cartography, Baltimore, MD, 2–7 April (pp. 100–109). Bethesda, MD: American Congress on Surveying and Mapping.

    Google Scholar 

  • Griffith, D. A. (1990). Supercomputing and spatial statistics: A reconnaissance. The Professional Geographer, 42(4), 481–492.

    Google Scholar 

  • Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communications of the Association for Computing Machinery, 31(5), 532–533.

    Google Scholar 

  • Healey, R., Dowers, S., Gittings, B., & Mineter, M. (Eds.). (1998). Parallel processing algorithms for GIS. Bristol, PA: Taylor & Francis.

    Google Scholar 

  • Hegeman, J. W., Sardeshmukh, V. B., Sugumaran, R., & Armstrong, M. P. (2014). Distributed LiDAR data processing in a high-memory cloud-computing environment. Annals of GIS, 20(4), 255–264.

    Google Scholar 

  • Hennessy, J. L., & Patterson, D. A. (2019). A new golden age for computer architecture. Communications of the Association for Computing Machinery, 62(2), 48–60.

    Google Scholar 

  • Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., & Mahmoudi, C. (2018). Fog computing conceptual model. Gaithersburg, MD: NIST . NIST Special Publication 500-325. https://doi.org/10.6028/NIST.SP.500-325

    Book  Google Scholar 

  • Karplus, W. J. (1989). Vector processors and multiprocessors. In K. Hwang & D. DeGroot (Eds.), Parallel processing for supercomputers and artificial intelligence. New York, NY: McGraw Hill.

    Google Scholar 

  • Lim, G. J., & Ma, L. (2013). GPU-based parallel vertex substitution algorithm for the p-median problem. Computers & Industrial Engineering, 64, 381–388.

    Google Scholar 

  • Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Gaithersburg, MD: NIST . National Institute of Standards and Technology Special Publication 800-145. https://doi.org/10.6028/NIST.SP.800-145

    Book  Google Scholar 

  • Moore, G. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114–117.

    Google Scholar 

  • Mower, J. E. (1992). Building a GIS for parallel computing environments. In Proceedings of the Fifth International Symposium on Spatial Data Handling (pp. 219–229). Columbia, SC: International Geographic Union.

    Google Scholar 

  • NIST (National Institute of Standards and Technology). (2015). NIST big data interoperability framework: Volume 1, Definitions . NIST Special Publication 1500-1. Gaithersburg, MD: NIST. https://doi.org/10.6028/NIST.SP.1500-1

    Book  Google Scholar 

  • NSF (National Science Foundation). (2018). CI2030: Future advanced cyberinfrastructure. A Report of the NSF Advisory Committee for Cyberinfrastructure. https://www.nsf.gov/cise/oac/ci2030/ACCI_CI2030Report_Approved_Pub.pdf

  • Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27, 286–306.

    Google Scholar 

  • Rokos, D., & Armstrong, M. P. (1996). Using Linda to compute spatial autocorrelation in parallel. Computers & Geosciences, 22(5), 425–432.

    Google Scholar 

  • Sandu, J. S., & Marble, D. F. (1988). An investigation into the utility of the Cray X-MP supercomputer for handling spatial data. In Proceedings of the Third International Symposium on Spatial Data Handling IGU, Sydney, Australia, pp. 253–266.

    Google Scholar 

  • Satyanarayanan, M. (2017). The emergence of edge computing. IEEE Computer, 50(1), 30–39.

    Google Scholar 

  • Shekhar, S., Ravada, S., Kumar, V., Chubb, D., & Turner, G. (1996). Parallelizing a GIS on a shared address space architecture. IEEE Computer, 29(12), 42–48.

    Google Scholar 

  • Shi, W., & Dustdar, S. (2016). The promise of edge computing. IEEE Computer, 49(5), 78–81.

    Google Scholar 

  • Smarr, L., & Catlett, C. E. (1992). Metacomputing. Communications of the Association for Computing Machinery, 35(6), 44–52.

    Google Scholar 

  • Snir, M., Otto, S., Huss-Lederman, S., Walker, D., & Dongarra, J. (1996). MPI: The complete reference. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stewart, C., Simms, S., Plale, B., Link, M., Hancock, D., & Fox, G. (2010). What is cyberinfrastructure? In SIGUCCS’'10 Proceedings of the 38th Annual ACM SIGUCCS Fall Conference: Navigation and Discovery. Norfolk, VA, 24–27 Oct, pp. 37–44. https://dl.acm.org/citation.cfm?doid=1878335.1878347

  • Stone, H. S., & Cocke, J. (1991). Computer architecture in the 1990s. IEEE Computer, 24(9), 30–38.

    Google Scholar 

  • Stonebraker, M. (1986). The case for shared nothing architecture. Database Engineering, 9, 1.

    Google Scholar 

  • Sugumaran, R., & Armstrong, M. P. (2017). Cloud computing. In The international encyclopedia of geography: people, the earth, environment, and technology. New York, NY: John Wiley. https://doi.org/10.1002/9781118786352.wbieg1017

    Chapter  Google Scholar 

  • Tang, W. (2017). GPU computing. In M. F. Goodchild & M. P. Armstrong (Eds.), International encyclopedia of geography. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118786352.wbieg0129

    Chapter  Google Scholar 

  • Tang, W., & Feng, W. (2017). Parallel map projection of vector-based big spatial data using general-purpose graphics processing units. Computers, Environment and Urban Systems, 61, 187–197.

    Google Scholar 

  • Wang, S. (2010). A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100(3), 535–557.

    Google Scholar 

  • Wang, S. (2013). CyberGIS: Blueprint for integrated and scalable geospatial software ecosystems. International Journal of Geographical Information Science, 27(11), 2119–2121.

    Google Scholar 

  • Wang, S. (2019). Cyberinfrastructure. In J. P. Wilson (Ed.), The geographic information science & technology body of knowledge. Ithaca, NY: UCGIS. https://doi.org/10.22224/gistbok/2019.2.4

    Chapter  Google Scholar 

  • Wang, S., & Armstrong, M. P. (2003). A quadtree approach to domain decomposition for spatial interpolation in grid computing environments. Parallel Computing, 29(10), 1481–1504.

    Google Scholar 

  • Wang, S., & Armstrong, M. P. (2009). A theoretical approach to the use of cyberinfrastructure in geographical analysis. International Journal of Geographical Information Science, 23(2), 169–193. https://doi.org/10.1080/13658810801918509

    Article  Google Scholar 

  • Wang, S., Cowles, M. K., & Armstrong, M. P. (2008). Grid computing of spatial statistics: Using the TeraGrid for Gi∗(d) analysis. Concurrency and Computation: Practice and Experience, 20(14), 1697–1720. https://doi.org/10.1002/cpe.1294

    Article  Google Scholar 

  • Yan, J., Cowles, M. K., Wang, S., & Armstrong, M. P. (2007). Parallelizing MCMC for Bayesian spatiotemporal geostatistical models. Statistics and Computing, 17(4), 323–335.

    Google Scholar 

  • Yang, C., Huang, Q., Li, Z., Xu, C., & Liu, K. (2013). Spatial cloud computing: A practical approach. Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc P. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armstrong, M.P. (2020). High Performance Computing for Geospatial Applications: A Retrospective View. In: Tang, W., Wang, S. (eds) High Performance Computing for Geospatial Applications. Geotechnologies and the Environment, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-47998-5_2

Download citation

Publish with us

Policies and ethics